[1] | R. Adamczak, R. Latała, A. Litvak, A. Pajor, N. Tomczak-Jaegermann, Chevet type inequality and norms of submatrices, preprint.; R. Adamczak, R. Latała, A. Litvak, A. Pajor, N. Tomczak-Jaegermann, Chevet type inequality and norms of submatrices, preprint. ·Zbl 1253.60005 |
[2] | Adamczak, R.; Litvak, A.; Pajor, A.; Tomczak-Jaegermann, N., Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles, J. Amer. Math. Soc., 23, 535-561 (2010) ·Zbl 1206.60006 |
[3] | Adamczak, R.; Litvak, A.; Pajor, A.; Tomczak-Jaegermann, N., Sharp bounds on the rate of convergence of empirical covariance matrix, C. R. Math. Acad. Sci. Paris, 349, 195-200 (2011) ·Zbl 1208.60006 |
[4] | Aubrun, G., Sampling convex bodies: a random matrix approach, Proc. Amer. Math. Soc., 135, 1293-1303 (2007) ·Zbl 1203.52003 |
[5] | Bai, Z. D.; Yin, Y. Q., Limit of the smallest eigenvalue of a large dimensional sample covariance matrix, Ann. Probab., 21, 1275-1294 (1993) ·Zbl 0779.60026 |
[6] | Bobkov, S. G.; Nazarov, F. L., On convex bodies and log-concave probability measures with unconditional basis, (Geometric Aspects of Functional Analysis. Geometric Aspects of Functional Analysis, Lecture Notes in Math., vol. 1807 (2003)), 53-69 ·Zbl 1039.52004 |
[7] | Borell, C., The Brunn-Minkowski inequality in Gauss space, Invent. Math., 30, 207-216 (1975) ·Zbl 0292.60004 |
[8] | Bourgain, J., Random points in isotropic convex bodies, (Convex Geometric Analysis. Convex Geometric Analysis, Berkeley, CA, 1996. Convex Geometric Analysis. Convex Geometric Analysis, Berkeley, CA, 1996, Math. Sci. Res. Inst. Publ., vol. 34 (1999)), 53-58 ·Zbl 0941.52003 |
[9] | Dudley, R. M., Uniform Central Limit Theorems, Cambridge Stud. Adv. Math., vol. 63 (1999), Cambridge University Press ·Zbl 0951.60033 |
[10] | Fernique, X., Régularité des trajectoires des fonctiones aléatoires gaussiennes, (Ecole dʼEté de Probabilités de St-Flour 1974. Ecole dʼEté de Probabilités de St-Flour 1974, Lecture Notes in Math., vol. 480 (1975), Springer-Verlag), 1-96 ·Zbl 0331.60025 |
[11] | Giannopoulos, A., Notes on isotropic convex bodies, available at |
[12] | Giannopoulos, A.; Hartzoulaki, M.; Tsolomitis, A., Random points in isotropic unconditional convex bodies, J. Lond. Math. Soc., 72, 779-798 (2005) ·Zbl 1085.52003 |
[13] | Giné, E.; Zinn, J., Some limit theorems for empirical processes, Ann. Probab., 12, 4, 929-989 (1984) ·Zbl 0553.60037 |
[14] | Gluskin, E. D.; Kwapien, S., Tail and moment estimates for sums of independent random variables with logarithmically concave tails, Studia Math., 114, 303-309 (1995) ·Zbl 0834.60050 |
[15] | Kwapień, S.; Woyczyński, W. A., Random Series and Stochastic Integrals: Single and Multiple (1992), Birkhäuser ·Zbl 0751.60035 |
[16] | Latała, R., Estimation of moments of sums of independent real random variables, Ann. Probab., 25, 1502-1513 (1997) ·Zbl 0885.60011 |
[17] | Latała, R., On weak tail domination of random vectors, Bull. Pol. Acad. Sci. Math., 57, 75-80 (2009) ·Zbl 1170.60309 |
[18] | Latała, R., Order statistics and concentration of \(\ell_r\) norms for log-concave vectors, J. Funct. Anal., 261, 681-696 (2011) ·Zbl 1217.60016 |
[19] | Ledoux, M.; Talagrand, M., Probability in Banach Spaces. Isoperimetry and Processes, Ergeb. Math. Grenzgeb. (3), vol. 23 (1991), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0748.60004 |
[20] | Mendelson, S., Empirical processes with a bounded \(\psi_1\) diameter, Geom. Funct. Anal., 20, 4, 988-1027 (2010) ·Zbl 1204.60042 |
[21] | Mendelson, S.; Pajor, A.; Tomczak-Jaegermann, N., Reconstruction and subgaussian operators, Geom. Funct. Anal., 17, 4, 1248-1282 (2007) ·Zbl 1163.46008 |
[22] | Milman, V. D.; Schechtman, G., Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Math., vol. 1200 (1986), Springer ·Zbl 0911.52002 |
[23] | Paouris, G., Concentration of mass on convex bodies, Geom. Funct. Anal., 16, 5, 1021-1049 (2006) ·Zbl 1114.52004 |
[24] | Pisier, G., The Volume of Convex Bodies and Banach Space Geometry (1989), Cambridge University Press ·Zbl 0698.46008 |
[25] | Rudelson, M., Random vectors in the isotropic position, J. Funct. Anal., 164, 60-72 (1999) ·Zbl 0929.46021 |
[26] | Rudelson, M.; Vershynin, R., Non-asymptotic theory of random matrices: extreme singular values, (Proceedings of the International Congress of Mathematicians (English summary), vol. III (2010), Hindustan Book Agency: Hindustan Book Agency New Delhi), 1576-1602 ·Zbl 1227.60011 |
[27] | Srivastava, N.; Vershynin, R., Covariance estimation for distributions with \(2 + \epsilon\) moments |
[28] | Talagrand, M., Regularity of Gaussian processes, Acta Math., 159, 99-149 (1987) ·Zbl 0712.60044 |
[29] | Talagrand, M., The supremum of some canonical processes, Amer. J. Math., 116, 283-325 (1994) ·Zbl 0798.60040 |
[30] | Talagrand, M., The Generic Chaining (2005), Springer ·Zbl 1075.60001 |
[31] | Van der Vaart, A. W.; Wellner, J. A., Weak Convergence and Empirical Processes (1996), Springer-Verlag ·Zbl 0862.60002 |
[32] | Vershynin, R., Introduction to the non-asymptotic analysis of random matrices, (Eldar, Yonina; Kutyniok, Gitta, Compressed Sensing: Theory and Applications (2012), Cambridge University Press), 210-268 |
[33] | R. Vershynin, How close is the sample covariance matrix to the actual covariance matrix?, J. Theoret. Probab., doi:10.1007/s10959-010-0338-z; R. Vershynin, How close is the sample covariance matrix to the actual covariance matrix?, J. Theoret. Probab., doi:10.1007/s10959-010-0338-z ·Zbl 1365.62208 |