[1] | Adams R.A.: General logarithmic Sobolev inequalities and Orlicz embedding. J. Funct. Anal. 34, 292–303 (1979) ·Zbl 0425.46020 ·doi:10.1016/0022-1236(79)90036-3 |
[2] | Aubin T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976) ·Zbl 0371.46011 |
[3] | Bakry D., Coulhon T., Ledoux M., Saloff–Coste L.: Sobolev inequalities in disguise. Indiana Univ. Math. J. 44, 1033–1074 (1995) ·Zbl 0857.26006 ·doi:10.1512/iumj.1995.44.2019 |
[4] | Beckner W.: Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality. Ann. Math. 138, 213–242 (1993) ·Zbl 0826.58042 ·doi:10.2307/2946638 |
[5] | Beckner, W.: Geometric proof of Nash’s inequality. Int. Math. Res. Not. 67–71 (1998) ·Zbl 0895.35015 |
[6] | Beckner W.: Geometric asymptotics and the logarithmic Sobolev inequality. Forum Math. 11, 105–137 (1999) ·Zbl 0917.58049 ·doi:10.1515/form.11.1.105 |
[7] | Bendikov A.D., Maheux P.: Nash type inequalities for fractional powers of non-negative self-adjoint operators. Trans. Am. Math. Soc. 359, 3085–3097 (2007) ·Zbl 1122.47014 ·doi:10.1090/S0002-9947-07-04020-2 |
[8] | Brothers J.E., Ziemer W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988) ·Zbl 0633.46030 |
[9] | Burchard A.: Steiner symmetrization is continuous in W 1,p . Geom. Funct. Anal. 7, 823–860 (1997) ·Zbl 0912.46034 ·doi:10.1007/s000390050027 |
[10] | Campi S., Gronchi P.: The L p -Busemann–Petty centroid inequality. Adv. Math. 167, 128–141 (2002) ·Zbl 1002.52005 ·doi:10.1006/aima.2001.2036 |
[11] | Carlen E.A.: Superadditivity of Fisher’s information and logarithmic Sobolev inequalities. J. Funct. Anal. 101, 194–211 (1991) ·Zbl 0732.60020 ·doi:10.1016/0022-1236(91)90155-X |
[12] | Carlen, E.A., Loss, M.: Sharp constant in Nash’s inequality. Int. Math. Res. Not. 213–215 (1993) ·Zbl 0822.35018 |
[13] | Carleson L., Chang S.Y.A.: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. 110, 113–127 (1986) ·Zbl 0619.58013 |
[14] | Chiti G.: Rearrangements of functions and convergence in Orlicz spaces. Appl. Anal. 9, 23–27 (1979) ·Zbl 0424.46023 ·doi:10.1080/00036817908839248 |
[15] | Chou K.-S., Wang X.-J.: The L p -Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33–83 (2006) ·Zbl 1245.52001 ·doi:10.1016/j.aim.2005.07.004 |
[16] | Cianchi A.: Second-order derivatives and rearrangements. Duke Math. J. 105, 355–385 (2000) ·Zbl 1017.46023 ·doi:10.1215/S0012-7094-00-10531-5 |
[17] | Cianchi A.: Moser–Trudinger inequalities without boundary conditions and isoperimetric problems. Indiana Univ. Math. J. 54, 669–705 (2005) ·Zbl 1097.46016 ·doi:10.1512/iumj.2005.54.2589 |
[18] | Cianchi A.: Moser–Trudinger trace inequalities. Adv. Math. 217, 2005–2044 (2008) ·Zbl 1138.46020 ·doi:10.1016/j.aim.2007.09.007 |
[19] | Cianchi A., Esposito L., Fusco N., Trombetti C.: A quantitative Pólya–Szegö principle. J. Reine Angew. Math. 614, 153–189 (2008) ·Zbl 1175.46021 |
[20] | Cianchi A., Fusco N.: Functions of bounded variation and rearrangements. Arch. Ration. Mech. Anal. 165, 1–40 (2002) ·Zbl 1028.49035 ·doi:10.1007/s00205-002-0214-9 |
[21] | Cianchi A., Fusco N.: Steiner symmetric extremals in Pólya–Szegö type inequalities. Adv. Math. 203, 673–728 (2006) ·Zbl 1110.46021 ·doi:10.1016/j.aim.2005.05.007 |
[22] | Cianchi A., Fusco N.: Minimal rearrangements, strict convexity and minimal points. Appl. Anal. 85, 67–85 (2006) ·Zbl 1104.46016 ·doi:10.1080/00036810500277777 |
[23] | Cianchi A., Lutwak E., Yang D., Zhang G.: Affine Moser–Trudinger and Morrey–Sobolev inequalities. Calc. Var. Partial Differ. Equ. 36, 419–436 (2009) ·Zbl 1202.26029 ·doi:10.1007/s00526-009-0235-4 |
[24] | Cohn W.S., Lu G.: Best constants for Moser–Trudinger inequalities on the Heisenberg group. Indiana Univ. Math. J. 50, 1567–1591 (2001) ·Zbl 1019.43009 ·doi:10.1512/iumj.2001.50.2138 |
[25] | Cordero-Erausquin D., Nazaret B., Villani C.: A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182, 307–332 (2004) ·Zbl 1048.26010 ·doi:10.1016/S0001-8708(03)00080-X |
[26] | Del Pino M., Dolbeault J.: Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81, 847–875 (2002) ·Zbl 1112.35310 |
[27] | Del Pino M., Dolbeault J.: The optimal Euclidean L p -Sobolev logarithmic inequality. J. Funct. Anal. 197, 151–161 (2003) ·Zbl 1091.35029 ·doi:10.1016/S0022-1236(02)00070-8 |
[28] | Esposito L., Trombetti C.: Convex symmetrization and Pólya–Szegö inequality. Nonlinear Anal. 56, 43–62 (2004) ·Zbl 1038.26014 ·doi:10.1016/j.na.2003.07.010 |
[29] | Federer H.: Geometric Measure Theory. Springer, Berlin (1969) ·Zbl 0176.00801 |
[30] | Federer H., Fleming W.: Normal and integral currents. Ann. Math. 72, 458–520 (1960) ·Zbl 0187.31301 ·doi:10.2307/1970227 |
[31] | Ferone A., Volpicelli R.: Convex symmetrization: the equality case in the Pólya–Szegö inequality. Calc. Var. Part. Differ. Equ. 21, 259–272 (2004) ·Zbl 1116.49022 |
[32] | Flucher M.: Extremal functions for Trudinger–Moser inequality in 2 dimensions. Comment. Math. Helvetici 67, 471–497 (1992) ·Zbl 0763.58008 ·doi:10.1007/BF02566514 |
[33] | Gardner R.J.: The Brunn–Minkowksi inequality. Bull. Am. Math. Soc. (N.S.) 39, 355–405 (2002) ·Zbl 1019.26008 ·doi:10.1090/S0273-0979-02-00941-2 |
[34] | Gross L.: Logarithmic Sobolev inequalities. Am. J. Math. 97, 1061–1083 (1975) ·Zbl 0318.46049 ·doi:10.2307/2373688 |
[35] | Haberl C., Schuster F.E.: General L p affine isoperimetric inequalities. J. Differ. Geom. 83, 1–26 (2009) ·Zbl 1185.52005 |
[36] | Haberl C., Schuster F.E.: Asymmetric affine L p Sobolev inequalities. J. Funct. Anal. 257, 641–658 (2009) ·Zbl 1180.46023 ·doi:10.1016/j.jfa.2009.04.009 |
[37] | Hardy G., Littlewood J.E., Pólya G.: Inequalities. Cambridge University Press, Cambridge (1952) |
[38] | Hug D., Lutwak E., Yang D., Zhang G.: On the L p Minkowski problem for polytopes. Discrete Comput. Geom. 33, 699–715 (2005) ·Zbl 1078.52008 ·doi:10.1007/s00454-004-1149-8 |
[39] | Humbert E.: Extremal functions for the sharp L 2-Nash inequality. Calc. Var. Partial Differ. Equ. 22, 21–44 (2005) ·Zbl 1065.58025 ·doi:10.1007/s00526-003-0265-2 |
[40] | Kawohl, B.: Rearrangements and convexity of level sets in PDE. In: Lecture Notes in Mathematics, vol. 1150. Springer, Berlin (1985) ·Zbl 0593.35002 |
[41] | Kawohl B.: On the isoperimetric nature of a rearrangement inequality and its consequences for some variational problems. Arch. Ration. Mech. Anal. 94, 227–243 (1986) ·Zbl 0603.49030 ·doi:10.1007/BF00279864 |
[42] | Kesavan S.: Symmetrization and Applications. Series in Analysis 3. World Scientific, Hackensack (2006) ·Zbl 1110.35002 |
[43] | Ledoux, M.: Isoperimetry and Gaussian analysis. In: Lectures on Probability Theory and Statistics (Saint-Flour, 1994). Lecture Notes in Mathematics, vol. 1648, pp. 165–294. Springer, Berlin (1996) ·Zbl 0874.60005 |
[44] | Lieb E., Loss M.: Analysis. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001) ·Zbl 0966.26002 |
[45] | Lin K.C.: Extremal functions for Moser’s inequality. Trans. Am. Math. Soc. 348, 2663–2671 (1996) ·Zbl 0861.49001 ·doi:10.1090/S0002-9947-96-01541-3 |
[46] | Ludwig M.: Ellipsoids and matrix-valued valuations. Duke Math. J. 119, 159–188 (2003) ·Zbl 1033.52012 ·doi:10.1215/S0012-7094-03-11915-8 |
[47] | Ludwig M.: Minkowski valuations. Trans. Am. Math. Soc. 357, 4191–4213 (2005) ·Zbl 1077.52005 ·doi:10.1090/S0002-9947-04-03666-9 |
[48] | Ludwig M., Reitzner M.: A classification of SL(n) invariant valuations. Ann. Math. 172, 1219–1267 (2010) ·Zbl 1223.52007 ·doi:10.4007/annals.2010.172.1223 |
[49] | Ludwig, M., Xiao, J., Zhang, G.: Sharp convex Lorentz-Sobolev inequalities. Math. Ann., 29. doi: 10.1007/s00208-010-055-x ·Zbl 1220.26020 |
[50] | Lutwak E.: On some affine isoperimetric inequalities. J. Differ. Geom. 23, 1–13 (1986) ·Zbl 0592.52005 |
[51] | Lutwak E.: The Brunn–Minkowski–Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993) ·Zbl 0788.52007 |
[52] | Lutwak E.: The Brunn–Minkowski–Firey theory. II: Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996) ·Zbl 0853.52005 ·doi:10.1006/aima.1996.0022 |
[53] | Lutwak E., Oliker V.: On the regularity of solutions to a generalization of the Minkowski problem. J. Differ. Geom. 41, 227–246 (1995) ·Zbl 0867.52003 |
[54] | Lutwak E., Yang D., Zhang G.: L p affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000) ·Zbl 1034.52009 |
[55] | Lutwak E., Yang D., Zhang G.: A new ellipsoid associated with convex bodies. Duke Math. J. 104, 375–390 (2000) ·Zbl 0974.52008 ·doi:10.1215/S0012-7094-00-10432-2 |
[56] | Lutwak E., Yang D., Zhang G.: Sharp affine L p Sobolev inequalities. J. Differ. Geom. 62, 17–38 (2002) ·Zbl 1073.46027 |
[57] | Lutwak E., Yang D., Zhang G.: On the L p Minkowski problem. Trans. Am. Math. Soc 356, 4359–4370 (2004) ·Zbl 1069.52010 ·doi:10.1090/S0002-9947-03-03403-2 |
[58] | Lutwak, E., Yang, D., Zhang, G.: Optimal Sobolev norms and the L p Minkowski problem. Int. Math. Res. Not. 1–21 (2006) ·Zbl 1110.46023 |
[59] | Maz’ya V.G.: Classes of domains and imbedding theorems for function spaces. Dokl. Akad. Nauk. SSSR 133, 527–530 (1960) |
[60] | Moser J.: A sharp form of an inequality by Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970) ·Zbl 0213.13001 ·doi:10.1512/iumj.1971.20.20101 |
[61] | Petty, C.M.: Isoperimetric problems. In: Proc. Conf. Convexity and Combinatorial Geometry (Univ. Oklahoma 1971), pp. 26–41. University of Oklahoma (1972) |
[62] | Pólya, G., Szegö, G.: Isoperimetric inequalities in mathematical physics. Ann. Math. Stud. 27. Princeton University Press (1951) ·Zbl 0044.38301 |
[63] | Ruf B.: A sharp Trudinger–Moser type inequality for unbounded domains in $${\(\backslash\)mathbb{R}\^2}$$ . J. Funct. Anal. 219, 340–367 (2005) ·Zbl 1119.46033 ·doi:10.1016/j.jfa.2004.06.013 |
[64] | Schneider R.: Convex Bodies: The Brunn–Minkowski Theory. Cambridge University Press, Cambridge (1993) ·Zbl 0798.52001 |
[65] | Stam A.J.: Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inform. Control 2, 255–269 (1959) ·Zbl 0085.34701 ·doi:10.1016/S0019-9958(59)90348-1 |
[66] | Talenti G.: Best constant in Sobolev inequality. Ann. Math. Pure Appl. 110, 353–372 (1976) ·Zbl 0353.46018 ·doi:10.1007/BF02418013 |
[67] | Talenti G.: On isoperimetric theorems in mathematical physics. In: Gruber, P.M., Wills, J.M. (eds) Handbook of Convex Geometry, North-Holland, Amsterdam (1993) ·Zbl 0804.35005 |
[68] | Talenti, G.: Inequalities in rearrangement invariant function spaces. In: Krbec, M., Kufner, A., Opic, B., Rákosnik, J. (eds.) Nonlinear Analysis, Function Spaces and Applications, vol. 5, pp. 177–230. Prometheus, Prague (1994) |
[69] | Trudinger N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967) ·Zbl 0163.36402 |
[70] | Weissler F.B.: Logarithmic Sobolev inequalities for the heat-diffusion semigroup. Trans. Am. Math. Soc. 237, 255–269 (1978) ·Zbl 0376.47019 ·doi:10.1090/S0002-9947-1978-0479373-2 |
[71] | Xiao J.: The sharp Sobolev and isoperimetric inequalities split twice. Adv. Math. 211, 417–435 (2007) ·Zbl 1125.26026 ·doi:10.1016/j.aim.2006.08.006 |
[72] | Zhang G.: The affine Sobolev inequality. J. Differ. Geom. 53, 183–202 (1999) ·Zbl 1040.53089 |