Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A skew polynomial approach to integro-differential operators.(English)Zbl 1237.16023

May, John P. (ed.), ISSAC 2009. Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, Seoul, July 28–31, 2009. New York, NY: Association for Computing Machinery (ACM) (ISBN 978-1-60558-609-0). 287-294 (2009).

MSC:

16S32 Rings of differential operators (associative algebraic aspects)
47G20 Integro-differential operators
68W30 Symbolic computation and algebraic computation
32C38 Sheaves of differential operators and their modules, \(D\)-modules

Cite

References:

[1]F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, Cambridge, 1998.
[2]G. Baxter. An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math., 10:731-742, 1960. ·Zbl 0095.12705
[3]G. M. Bergman. The diamond lemma for ring theory. Adv. in Math., 29(2):178-218, 1978. ·Zbl 0326.16019
[4]R. Brüske, F. Ischebeck, and F. Vogel. Kommutative Algebra. Bibliographisches Institut, Mannheim, 1989. ·Zbl 0704.13001
[5]B. Buchberger. An algorithm for finding the bases elements of the residue class ring modulo a zero dimensional polynomial ideal (German). PhD thesis, Univ. of Innsbruck, 1965. ·Zbl 1245.13020
[6]B. Buchberger. Introduction to Gröbner bases. In{8}, pages 3-31. 1998.
[7]B. Buchberger, G. Regensburger, M. Rosenkranz, and L. Tec. General polynomial reduction with Theorema functors: Applications to integro-differential operators and polynomials. ACM Commun. Comput. Algebra, 42(3):135-137, 2008. Poster presented at ISSAC’08. 10.1145/1504347.1504355
[8]B. Buchberger and F. Winkler, editors. Gröbner bases and applications, volume 251 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1998.
[9]J. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic methods in non-commutative algebra. Kluwer Academic Publishers, Dordrecht, 2003. ·Zbl 1063.16054
[10]F. Chyzak and B. Salvy. Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput., 26(2):187-227, 1998. 10.1006/jsco.1998.0207 ·Zbl 0944.05006
[11]P. M. Cohn. Introduction to ring theory. Springer Undergraduate Mathematics Series. Springer-Verlag London Ltd., London, 2000. ·Zbl 1009.16001
[12]P. M. Cohn. Further algebra and applications. Springer-Verlag London Ltd., London, 2003. ·Zbl 1006.00001
[13]L. Gerritzen. Modules over the algebra of the noncommutative equation yx=1. Arch. Math. (Basel), 75(2):98-112, 2000. ·Zbl 0973.16017
[14]L. Guo. Baxter algebras and differential algebras. In Differential algebra and related topics (Newark, NJ, 2000), pages 281-305. World Sci. Publ., 2002. ·Zbl 1019.16013
[15]L. Guo and W. Keigher. On differential Rota-Baxter algebras. J. Pure Appl. Algebra, 212(3):522-540, 2008. ·Zbl 1185.16038
[16]N. Jacobson. Some remarks on one-sided inverses. Proc. Amer. Math. Soc., 1:352-355, 1950. ·Zbl 0037.15901
[17]E. Kolchin. Differential algebra and algebraic groups. Academic Press, New York-London, 1973. ·Zbl 0264.12102
[18]T. Y. Lam. A first course in noncommutative rings. Springer-Verlag, New York, 1991. ·Zbl 0728.16001
[19]V. Levandovskyy. Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation. PhD thesis, Universität Kaiserslauten, 2005.
[20]J. C. McConnell and J. C. Robson. Noncommutative Noetherian rings. American Mathematical Society, Providence, RI, revised edition, 2001. ·Zbl 0980.16019
[21]T. Mora. An introduction to commutative and noncommutative Gröbner bases. Theoret. Comput. Sci., 134(1):131-173, 1994. 10.1016/0304-3975(94)90283-6 ·Zbl 0824.68056
[22]M. Z. Nashed and G. F. Votruba. A unified operator theory of generalized inverses. In M. Z. Nashed, editor, Generalized inverses and applications, pages 1-109. Academic Press, New York, 1976. ·Zbl 0356.47001
[23]K. B. Oldham and J. Spanier. The fractional calculus. Academic Press, New York-London, 1974. ·Zbl 0292.26011
[24]Ø. Ore. Theory of non-commutative polynomials. Ann. Math., 34:480-508, 1933. ·Zbl 0007.15101
[25]G. Regensburger and M. Rosenkranz. An algebraic foundation for factoring linear boundary problems. Ann. Mat. Pura Appl. (4), 188(1):123-151, 2009. ·Zbl 1181.47014
[26]M. Rosenkranz. A new symbolic method for solving linear two-point boundary value problems on the level of operators. J. Symbolic Comput., 39(2):171-199, 2005. 10.1016/j.jsc.2004.09.004 ·Zbl 1126.68104
[27]M. Rosenkranz and G. Regensburger. Integro-differential polynomials and operators. In D. Jeffrey, editor, Proceedings of ISSAC ’08, pages 261-268, New York, NY, USA, 2008. ACM. 10.1145/1390768.1390805 ·Zbl 1489.68415
[28]M. Rosenkranz and G. Regensburger. Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. J. Symbolic Comput., 43(8):515-544, 2008. 10.1016/j.jsc.2007.11.007 ·Zbl 1151.34008
[29]G.-C. Rota. Baxter algebras and combinatorial identities. Bull. Amer. Math. Soc., 75:325-334, 1969. ·Zbl 0192.33801
[30]M. Saito, B. Sturmfels, and N. Takayama. Gröbner deformations of hypergeometric differential equations. Springer-Verlag, Berlin, 2000. ·Zbl 0946.13021
[31]V. Ufnarovski. Introduction to noncommutative Gröbner bases theory. In {8}, pages 259-280. 1998. ·Zbl 0902.16002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp