17B37 | Quantum groups (quantized enveloping algebras) and related deformations |
81R50 | Quantum groups and related algebraic methods applied to problems in quantum theory |
[1] | Beck J. (1994). Convex bases of PBW type for quantum affine algebras. Commun. Math. Phys. 165: 193–199 ·Zbl 0828.17016 ·doi:10.1007/BF02099742 |
[2] | Beck J. (1994). Braid group action and quantum affine algebras. Commun. Math. Phys. 165: 555–568 ·Zbl 0807.17013 ·doi:10.1007/BF02099423 |
[3] | Bergeron N., Gao Y. and Hu N. (2006). Drinfel’d doubles and Lusztig’s symmetries of two-parameter quantum groups. J. Algebra 301: 378–405 ·Zbl 1148.17007 ·doi:10.1016/j.jalgebra.2005.08.030 |
[4] | Bergeron, N., Gao, Y., Hu, N.: Representations of two-parameter quantum orthogonal and symplectic groups. ”Proceedings of the International Conference on Complex Geometry and Related Fields”, AMS/IP Studies in Adv. Math. 39, Providence, RI: Amer. Math. Soc., 2007, pp. 1–21 ·Zbl 1148.17008 |
[5] | Bai, X., Hu, N.: Two-parameter quantum groups of exceptional type E-series and convex PBW-type basis. Algebra Colloquium, to appear, available at http://arXiv.org/list/Math.QA/0605179 , 2006 |
[6] | Benkart G. and Witherspoon S. (2004). Two-parameter quantum groups and Drinfel’d doubles. Alg. Rep. Theory 7: 261–286 ·Zbl 1113.16041 ·doi:10.1023/B:ALGE.0000031151.86090.2e |
[7] | Benkart, G., Witherspoon, S.: Representatons of two-parameter quantum groups and Schur-Weyl duality. In: Hopf algebras, Lecture Notes in Pure and Appl. Math., 237, New York: Dekker, 2004, pp. 62–92 ·Zbl 1048.16021 |
[8] | Benkart, G., Witherspoon, S.: Restricted two-parameter quantum groups, In: Fields Institute Communications, ”Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry”, Vol. 40, Providence, RI: Amer. Math. Soc., 2004, pp. 293–318 ·Zbl 1048.16020 |
[9] | Damiani I. (1993). A basis of type Poincaré-Birkhoff-Witt for the quantum algebra of \(\widehat{{\mathfrak{sl}}}(2)\) J. Algebra 161: 291–310 ·Zbl 0803.17003 ·doi:10.1006/jabr.1993.1220 |
[10] | Ding J.T. and Iohara K. (1997). Generalization of Drinfel’d quantum affine algebras. Lett. Math. Phys. 41(2): 181–193 ·Zbl 0889.17011 ·doi:10.1023/A:1007341410987 |
[11] | Ding J.T. and Iohara K. (1997). Drinfel’d comultiplication and vertex operators. J. Geom. Phys. 23: 1–13 ·Zbl 0921.17003 ·doi:10.1016/S0393-0440(96)00041-1 |
[12] | Drinfel’d, V.G.: Quantum groups. ICM Proceedings (New York, Berkeley, 1986), Providencem RI: Amer. Math. Soc., pp. 798–820, 1987 |
[13] | Drinfel’d V.G. (1988). A new realization of Yangians and quantized affine algebras. Soviet Math. Dokl. 36: 212–216 ·Zbl 0667.16004 |
[14] | Frenkel I. and Jing N. (1998). Vertex representations of quantum affine algebras. Proc. Nat’l. Acad. Sci. USA. 85: 9373–9377 ·Zbl 0662.17006 ·doi:10.1073/pnas.85.24.9373 |
[15] | Grossé P. (2007). On quantum shuffle and quantum affine algebras. J. Algebra 318: 495–519 ·Zbl 1158.17005 ·doi:10.1016/S0021-8693(03)00307-7 |
[16] | Garland H. (1978). The arithmetic theory of loop algebras. J. Algebra 53: 480–551 ·Zbl 0383.17012 ·doi:10.1016/0021-8693(78)90294-6 |
[17] | Hu N. (2000). Quantum divided power algebra, q-derivatives and some new quantum groups. J. Algebra 232: 507–540 ·Zbl 0973.17019 ·doi:10.1006/jabr.2000.8385 |
[18] | Hu N. and Shi Q. (2007). The two-parameter quantum group of exceptional type G 2 and Lusztig’s symmetries. Pacific J. Math. 230: 327–345 ·Zbl 1207.17019 ·doi:10.2140/pjm.2007.230.327 |
[19] | Jing N. (1990). Twisted vertex representations of quantum affine algebras. Invent. Math. 102: 663–690 ·Zbl 0692.17006 ·doi:10.1007/BF01233443 |
[20] | Jing, N.: On Drinfel’d realization of quantum affine algebras. Ohio State Univ. Math. Res. Inst. Publ. 7, Berlin: de Gruyter, pp. 195–206, 1998 ·Zbl 0983.17013 |
[21] | Kac V. (1990). Infinite Dimentional Lie Algebras. Cambridge Univ. Press, Cambridge ·Zbl 0716.17022 |
[22] | Klimyk A. and Schmüdgen K. (1997). Quantum Groups and Their Reprsentations. Springer, Berlin ·Zbl 0891.17010 |
[23] | Khoroshkin S.M. and Tolstoy V.N. (1993). On Drinfel’d realization of quantum affine algebras. J. Geom. Phys. 11: 445–452 ·Zbl 0784.17022 ·doi:10.1016/0393-0440(93)90070-U |
[24] | Lalonde M. and Ram A. (1995). Standard Lyndon bases of Lie algebras and enveloping algebras. Trans. Amer. Math. Soc. 347(5): 1821–1830 ·Zbl 0833.17003 ·doi:10.2307/2154977 |
[25] | Levendorskii S., Soibel’man Y. and Stukopin V. (1993). Quantum Weyl group and universal quantum R-matrix for affine Lie algebra \(A_{1}^{(1)}\) Lett. Math. Phys. 27(4): 253–264 ·Zbl 0776.17011 ·doi:10.1007/BF00777372 |
[26] | Rosso M. (1998). Quantum groups and quantum shuffles. Invent. Math. 133(2): 399–416 ·Zbl 0912.17005 ·doi:10.1007/s002220050249 |
[27] | Rosso, M.: Lyndon bases and the multiplicative formula for R-matrices. Preprint, 2002 |
[28] | Takeuchi M. (1990). A two-parameter quantization of GL(n). Proc. Japan Acad. 66(Ser. A): 112–114 ·Zbl 0723.17012 ·doi:10.3792/pjaa.66.112 |