Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Two-parameter quantum affine algebra \(U_{r,s}(\widehat{\mathfrak {sl}_n})\), Drinfel’d realization and quantum affine Lyndon basis.(English)Zbl 1236.17021

Summary: We further define two-parameter quantum affine algebra \(U_{r,s}(\widehat{\mathfrak {sl}_n})(n > 2)\) after the work on the finite cases, which turns out to be a Drinfel’d double. Of importance for the quantum affine cases is that we can work out the compatible two-parameter version of the Drinfel’d realization as a quantum affinization of \(U_{r,s}({\mathfrak{sl}}_n)\) and establish the Drinfel’d Isomorphism Theorem in the two-parameter setting, via developing a new combinatorial approach (quantum calculation) to the quantum affine Lyndon basis we present (with an explicit valid algorithm based on the use of Drinfel’d generators).

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory

Cite

References:

[1]Beck J. (1994). Convex bases of PBW type for quantum affine algebras. Commun. Math. Phys. 165: 193–199 ·Zbl 0828.17016 ·doi:10.1007/BF02099742
[2]Beck J. (1994). Braid group action and quantum affine algebras. Commun. Math. Phys. 165: 555–568 ·Zbl 0807.17013 ·doi:10.1007/BF02099423
[3]Bergeron N., Gao Y. and Hu N. (2006). Drinfel’d doubles and Lusztig’s symmetries of two-parameter quantum groups. J. Algebra 301: 378–405 ·Zbl 1148.17007 ·doi:10.1016/j.jalgebra.2005.08.030
[4]Bergeron, N., Gao, Y., Hu, N.: Representations of two-parameter quantum orthogonal and symplectic groups. ”Proceedings of the International Conference on Complex Geometry and Related Fields”, AMS/IP Studies in Adv. Math. 39, Providence, RI: Amer. Math. Soc., 2007, pp. 1–21 ·Zbl 1148.17008
[5]Bai, X., Hu, N.: Two-parameter quantum groups of exceptional type E-series and convex PBW-type basis. Algebra Colloquium, to appear, available at http://arXiv.org/list/Math.QA/0605179 , 2006
[6]Benkart G. and Witherspoon S. (2004). Two-parameter quantum groups and Drinfel’d doubles. Alg. Rep. Theory 7: 261–286 ·Zbl 1113.16041 ·doi:10.1023/B:ALGE.0000031151.86090.2e
[7]Benkart, G., Witherspoon, S.: Representatons of two-parameter quantum groups and Schur-Weyl duality. In: Hopf algebras, Lecture Notes in Pure and Appl. Math., 237, New York: Dekker, 2004, pp. 62–92 ·Zbl 1048.16021
[8]Benkart, G., Witherspoon, S.: Restricted two-parameter quantum groups, In: Fields Institute Communications, ”Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry”, Vol. 40, Providence, RI: Amer. Math. Soc., 2004, pp. 293–318 ·Zbl 1048.16020
[9]Damiani I. (1993). A basis of type Poincaré-Birkhoff-Witt for the quantum algebra of \(\widehat{{\mathfrak{sl}}}(2)\) J. Algebra 161: 291–310 ·Zbl 0803.17003 ·doi:10.1006/jabr.1993.1220
[10]Ding J.T. and Iohara K. (1997). Generalization of Drinfel’d quantum affine algebras. Lett. Math. Phys. 41(2): 181–193 ·Zbl 0889.17011 ·doi:10.1023/A:1007341410987
[11]Ding J.T. and Iohara K. (1997). Drinfel’d comultiplication and vertex operators. J. Geom. Phys. 23: 1–13 ·Zbl 0921.17003 ·doi:10.1016/S0393-0440(96)00041-1
[12]Drinfel’d, V.G.: Quantum groups. ICM Proceedings (New York, Berkeley, 1986), Providencem RI: Amer. Math. Soc., pp. 798–820, 1987
[13]Drinfel’d V.G. (1988). A new realization of Yangians and quantized affine algebras. Soviet Math. Dokl. 36: 212–216 ·Zbl 0667.16004
[14]Frenkel I. and Jing N. (1998). Vertex representations of quantum affine algebras. Proc. Nat’l. Acad. Sci. USA. 85: 9373–9377 ·Zbl 0662.17006 ·doi:10.1073/pnas.85.24.9373
[15]Grossé P. (2007). On quantum shuffle and quantum affine algebras. J. Algebra 318: 495–519 ·Zbl 1158.17005 ·doi:10.1016/S0021-8693(03)00307-7
[16]Garland H. (1978). The arithmetic theory of loop algebras. J. Algebra 53: 480–551 ·Zbl 0383.17012 ·doi:10.1016/0021-8693(78)90294-6
[17]Hu N. (2000). Quantum divided power algebra, q-derivatives and some new quantum groups. J. Algebra 232: 507–540 ·Zbl 0973.17019 ·doi:10.1006/jabr.2000.8385
[18]Hu N. and Shi Q. (2007). The two-parameter quantum group of exceptional type G 2 and Lusztig’s symmetries. Pacific J. Math. 230: 327–345 ·Zbl 1207.17019 ·doi:10.2140/pjm.2007.230.327
[19]Jing N. (1990). Twisted vertex representations of quantum affine algebras. Invent. Math. 102: 663–690 ·Zbl 0692.17006 ·doi:10.1007/BF01233443
[20]Jing, N.: On Drinfel’d realization of quantum affine algebras. Ohio State Univ. Math. Res. Inst. Publ. 7, Berlin: de Gruyter, pp. 195–206, 1998 ·Zbl 0983.17013
[21]Kac V. (1990). Infinite Dimentional Lie Algebras. Cambridge Univ. Press, Cambridge ·Zbl 0716.17022
[22]Klimyk A. and Schmüdgen K. (1997). Quantum Groups and Their Reprsentations. Springer, Berlin ·Zbl 0891.17010
[23]Khoroshkin S.M. and Tolstoy V.N. (1993). On Drinfel’d realization of quantum affine algebras. J. Geom. Phys. 11: 445–452 ·Zbl 0784.17022 ·doi:10.1016/0393-0440(93)90070-U
[24]Lalonde M. and Ram A. (1995). Standard Lyndon bases of Lie algebras and enveloping algebras. Trans. Amer. Math. Soc. 347(5): 1821–1830 ·Zbl 0833.17003 ·doi:10.2307/2154977
[25]Levendorskii S., Soibel’man Y. and Stukopin V. (1993). Quantum Weyl group and universal quantum R-matrix for affine Lie algebra \(A_{1}^{(1)}\) Lett. Math. Phys. 27(4): 253–264 ·Zbl 0776.17011 ·doi:10.1007/BF00777372
[26]Rosso M. (1998). Quantum groups and quantum shuffles. Invent. Math. 133(2): 399–416 ·Zbl 0912.17005 ·doi:10.1007/s002220050249
[27]Rosso, M.: Lyndon bases and the multiplicative formula for R-matrices. Preprint, 2002
[28]Takeuchi M. (1990). A two-parameter quantization of GL(n). Proc. Japan Acad. 66(Ser. A): 112–114 ·Zbl 0723.17012 ·doi:10.3792/pjaa.66.112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp