Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations.(English)Zbl 1232.92032

Summary: Recently, there has been a number of experimental studies convincingly demonstrating that a suspension of self-propelled bacteria (microswimmers in general) may have an effective viscosity significantly smaller than the viscosity of the ambient fluid. This is in sharp contrast with suspensions of hard passive inclusions, whose presence always increases the viscosity. We present a 2D model for a suspension of microswimmers in a fluid and analyze it analytically in the dilute regime (no swimmer-swimmer interactions) and numerically using a Mimetic Finite Difference discretization. Our analysis shows that in the dilute regime (in the absence of rotational diffusion) the effective shear viscosity is not affected by self-propulsion. But at the moderate concentrations (due to swimmer-swimmer interactions) the effective viscosity decreases linearly as a function of the propulsion strength of the swimmers. These findings prove that (i) a physically observable decrease of viscosity for a suspension of self-propelled microswimmers can be explained purely by hydrodynamic interactions and (ii) self-propulsion and interaction of swimmers are both essential to the reduction of the effective shear viscosity. We also performed a number of numerical experiments analyzing the dynamics of swimmers resulting from pairwise interactions. The numerical results agree with the physically observed phenomena (e.g., attraction of swimmer to swimmer and swimmer to the wall). This is viewed as an additional validation of the model and the numerical scheme.

MSC:

92C17 Cell movement (chemotaxis, etc.)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C05 Biophysics
92C35 Physiological flow
92-08 Computational methods for problems pertaining to biology

Cite

References:

[1]Aranson IS, Tsimring LS (2006) Patterns and collective behavior in granular media: theoretical concepts. Rev Mod Phys 78: 641–692 ·doi:10.1103/RevModPhys.78.641
[2]Batchelor GK (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41: 545–570 ·Zbl 0193.25702 ·doi:10.1017/S0022112070000745
[3]Batchelor GK, Green JT (1972) The determination of the bulk stress in a suspension of spherical particles to order c 2. J Fluid Mech 56: 401–427 ·Zbl 0246.76108 ·doi:10.1017/S0022112072002435
[4]Beirão da Veiga L, Gyrya V, Lipnikov K, Manzini G (2009) Mimetic finite difference method for the Stokes problem on polygonal meshes. J Comput Phys 228(19): 7215–7232 ·Zbl 1172.76032 ·doi:10.1016/j.jcp.2009.06.034
[5]Berlyand L, Borcea L, Panchenko A (2005) Network approximation for effective viscosity of concentrated suspensions with complex geometry. SIAM J Math Anal 36(5): 1580–1628 (electronic) ·Zbl 1130.76082 ·doi:10.1137/S0036141003424708
[6]Berlyand L, Panchenko A (2007) Strong and weak blow up of the viscous dissipation rates for concentrated suspensions. J Fluid Mech 578: 1–34 ·Zbl 1127.76067 ·doi:10.1017/S0022112007004922
[7]Berlyand L, Gorb Y, Novikov A (2009) Fictitious fluid approach and anomalous blow-up of the dissipation rate in a 2D model of concentrated suspensions. Arch Ration Mech Anal 193(3): 585–622 ·Zbl 1170.76055 ·doi:10.1007/s00205-008-0152-2
[8]Berke AP, Turner L, Berg HC, Lauga E (2008) Hydrodynamic attraction of swimming microorganisms by surfaces. Phys Rev Lett 101: 038102 ·doi:10.1103/PhysRevLett.101.038102
[9]Brezzi F, Lipnikov K, Shashkov M, Simoncini V (2007) A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput Methods Appl Mech Eng 196: 3682–3692 ·Zbl 1173.76370 ·doi:10.1016/j.cma.2006.10.028
[10]Cates ME, Fielding SM, Marenduzzo D, Orlandini E, Yeomans JM (2008) Shearing active gels close to the isotropic-nematic transition. Phys Rev Lett 2008:068102:1–4
[11]Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO (2004) Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett 93(9):098103:1–4
[12]Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2007) Microscopic artificial swimmers. Nature 437(7060): 862–865 ·doi:10.1038/nature04090
[13]Duvaut G, Lions JL (1976) Inequalities in mechanics and physics. Springer, Berlin ·Zbl 0331.35002
[14]Drescher K, Leptos KC, Tuval I, Ishikawa T, Pedley TJ, Goldstein RE (2009) Dancing volvox: hydrodynamic bound states of swimming algae. Phys Rev Lett 102(16): 168101 ·doi:10.1103/PhysRevLett.102.168101
[15]Einstein A (1906) A new determination of the molecular dimensions. Ann Phys 19(2): 289–306 ·JFM 37.0811.01 ·doi:10.1002/andp.19063240204
[16]Galdi GP (1994) An introduction to the mathematical theory of the Navier–Stokes equations, vol I. Springer Tracts in Natural Philosophy, vol 38. Linearized steady problems. Springer, New York ·Zbl 0949.35004
[17]Golestanian R, Ajdari A (2008) Mechanical response of a small swimmer driven by conformational transitions. Phys Rev Lett 100: 038101 ·doi:10.1103/PhysRevLett.100.038101
[18]Gyrya V, Berlyand L, Aranson I, Karpeev D (2009) A model of hydrodynamic interaction between swimming bacteria. Bull Math Biol 72: 148–183 ·Zbl 1184.92007 ·doi:10.1007/s11538-009-9442-6
[19]Haines B, Aranson I, Berlyand L, Karpeev D (2008) Effective viscosity of dilute bacterial suspensions: a two-dimensional model. Phys Biol 5:046003:1–9 ·Zbl 1318.92035
[20]Haines BM, Sokolov A, Aranson IS, Berlyand L, Karpeev DA (2009) Three-dimensional model for the effective viscosity of bacterial suspensions. Phys Rev E 80: 041922 ·doi:10.1103/PhysRevE.80.041922
[21]Hatwalne Y, Ramaswamy S, Rao M, Simha RA (2004) Rheology of active-particle suspensions. Phys Rev Lett 92: 118101 ·doi:10.1103/PhysRevLett.92.118101
[22]Hernandez-Ortiz J, Stoltz C, Graham M (2005) Transport and collective dynamics in suspensions of confined swimming particles. Phys Rev Lett 95:204501:1–4
[23]Hinch EJ, Leal LG (1972) The effect of brownian motion on the rheological properties of a suspension of non-spherical particles. J Fluid Mech 52(4): 683–712 ·Zbl 0246.76105 ·doi:10.1017/S002211207200271X
[24]Ishikawa T, Pedley TJ (2007) The rheology of a semi-dilute suspension of swimming model micro-organisms. J Fluid Mech 588: 399–435 ·Zbl 1141.76464
[25]Ishikawa T, Pedley TJ (2007) Diffusion of swimming model micro-organisms in a semi-dilute suspension. J Fluid Mech 588: 437–462 ·Zbl 1141.76485
[26]Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond Ser A 102: 161–179 ·JFM 49.0748.02 ·doi:10.1098/rspa.1922.0078
[27]Leal LG, Hinch EJ (1971) The effect of weak brownian rotations on particles in shear flow. J Fluid Mech 46(4): 685–703 ·Zbl 0218.76050 ·doi:10.1017/S0022112071000788
[28]Leptos KC, Guasto JS, Gollub JP, Pesci AI, Goldstein RE (2009) Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys Rev Lett 103: 198103 ·doi:10.1103/PhysRevLett.103.198103
[29]Levy T, Sanchez-Palencia E (1983) Suspension of solid particles in a newtonian fluid. J Fluid Mech 56: 401–427 ·Zbl 0538.76103
[30]Najafi A, Golestanian R (2004) Simple swimmer and low reynolds number: three linked spheres. Phys Rev E 69: 062901 ·doi:10.1103/PhysRevE.69.062901
[31]Nasseri S, Phan-Thien N (1997) Hydrodynamic interaction between two nearby swimming micromachines. Comput Mech 20: 551–559 ·Zbl 0910.76100 ·doi:10.1007/s004660050275
[32]Nunan KC, Keller JB (1984) Effective viscosity of periodic suspensions. J Fluid Mech 142: 269–287 ·Zbl 0595.76104 ·doi:10.1017/S0022112084001105
[33]Purcell E (1977) Life at low Reynolds number. Am J Phys 309(45): 3–11 ·doi:10.1119/1.10903
[34]Saintillan S, Shelley M (2007) Orientational order and instabilities in suspensions of self-locomoting rods. Phys Rev Lett 99:058102:1–4
[35]Short M, Solari C, Ganguly S, Powers T, Kessler J, Goldstein R (2006) Flows driven by flagella of multicellular organisms enhance long-range molecular transport. Proc Natl Acad Sci USA 103: 8315–8319 ·doi:10.1073/pnas.0600566103
[36]Sokolov A, Aranson IS (2009) Reduction of viscosity in suspension of swimming bacteria. Phys Rev Lett 103: 148101 ·doi:10.1103/PhysRevLett.103.148101
[37]Sokolov A, Goldstein RE, Feldchtein FI, Aranson IS (2009) Enhanced mixing and spatial instability in concentrated bacterial suspensions. Phys Rev E (Statistical, Nonlinear, and Soft Matter Physics) 80(3): 031903 ·doi:10.1103/PhysRevE.80.031903
[38]Sokolov A, Aranson I, Kessler J, Goldstein R (2007) Concentration dependence of the collective dynamics of swimming bacteria. Phys Rev Lett 98:158102:1–4
[39]Sokolov A, Apodaca MM, Grzybowski BA, Aranson IS (2010) Swimming bacteria power microscopic gears. Proc Natl Acad Sci USA 107: 969–974 ·doi:10.1073/pnas.0913015107
[40]Taylor G (1951) Analysis of the swimming of microscopic organisms. Proc R Soc Lond Ser A 209: 447–461 ·Zbl 0043.40302 ·doi:10.1098/rspa.1951.0218
[41]Tuval I, Cisneros L, Dombrowski C, Wolgemuth CW, Kessler JO, Goldstein RE (2005) Bacterial swimming and oxygen transport near contact lines. Proc Natl Acad Sci 102: 2277–2282 ·Zbl 1277.35332 ·doi:10.1073/pnas.0406724102
[42]Underhill PT, Hernandez-Ortiz JP, Graham MD (2008) Diffusion and spatial correlations in suspensions of swimming particles. Phys Rev Lett 100:248101–1–4
[43]Wu X-L, Libchaber A (2000) Particle diffusion in a quasi-two-dimensional bacterial bath. Phys Rev Lett 84: 3017–3020 ·doi:10.1103/PhysRevLett.84.3017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp