[1] | Aranson IS, Tsimring LS (2006) Patterns and collective behavior in granular media: theoretical concepts. Rev Mod Phys 78: 641–692 ·doi:10.1103/RevModPhys.78.641 |
[2] | Batchelor GK (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41: 545–570 ·Zbl 0193.25702 ·doi:10.1017/S0022112070000745 |
[3] | Batchelor GK, Green JT (1972) The determination of the bulk stress in a suspension of spherical particles to order c 2. J Fluid Mech 56: 401–427 ·Zbl 0246.76108 ·doi:10.1017/S0022112072002435 |
[4] | Beirão da Veiga L, Gyrya V, Lipnikov K, Manzini G (2009) Mimetic finite difference method for the Stokes problem on polygonal meshes. J Comput Phys 228(19): 7215–7232 ·Zbl 1172.76032 ·doi:10.1016/j.jcp.2009.06.034 |
[5] | Berlyand L, Borcea L, Panchenko A (2005) Network approximation for effective viscosity of concentrated suspensions with complex geometry. SIAM J Math Anal 36(5): 1580–1628 (electronic) ·Zbl 1130.76082 ·doi:10.1137/S0036141003424708 |
[6] | Berlyand L, Panchenko A (2007) Strong and weak blow up of the viscous dissipation rates for concentrated suspensions. J Fluid Mech 578: 1–34 ·Zbl 1127.76067 ·doi:10.1017/S0022112007004922 |
[7] | Berlyand L, Gorb Y, Novikov A (2009) Fictitious fluid approach and anomalous blow-up of the dissipation rate in a 2D model of concentrated suspensions. Arch Ration Mech Anal 193(3): 585–622 ·Zbl 1170.76055 ·doi:10.1007/s00205-008-0152-2 |
[8] | Berke AP, Turner L, Berg HC, Lauga E (2008) Hydrodynamic attraction of swimming microorganisms by surfaces. Phys Rev Lett 101: 038102 ·doi:10.1103/PhysRevLett.101.038102 |
[9] | Brezzi F, Lipnikov K, Shashkov M, Simoncini V (2007) A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput Methods Appl Mech Eng 196: 3682–3692 ·Zbl 1173.76370 ·doi:10.1016/j.cma.2006.10.028 |
[10] | Cates ME, Fielding SM, Marenduzzo D, Orlandini E, Yeomans JM (2008) Shearing active gels close to the isotropic-nematic transition. Phys Rev Lett 2008:068102:1–4 |
[11] | Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO (2004) Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett 93(9):098103:1–4 |
[12] | Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2007) Microscopic artificial swimmers. Nature 437(7060): 862–865 ·doi:10.1038/nature04090 |
[13] | Duvaut G, Lions JL (1976) Inequalities in mechanics and physics. Springer, Berlin ·Zbl 0331.35002 |
[14] | Drescher K, Leptos KC, Tuval I, Ishikawa T, Pedley TJ, Goldstein RE (2009) Dancing volvox: hydrodynamic bound states of swimming algae. Phys Rev Lett 102(16): 168101 ·doi:10.1103/PhysRevLett.102.168101 |
[15] | Einstein A (1906) A new determination of the molecular dimensions. Ann Phys 19(2): 289–306 ·JFM 37.0811.01 ·doi:10.1002/andp.19063240204 |
[16] | Galdi GP (1994) An introduction to the mathematical theory of the Navier–Stokes equations, vol I. Springer Tracts in Natural Philosophy, vol 38. Linearized steady problems. Springer, New York ·Zbl 0949.35004 |
[17] | Golestanian R, Ajdari A (2008) Mechanical response of a small swimmer driven by conformational transitions. Phys Rev Lett 100: 038101 ·doi:10.1103/PhysRevLett.100.038101 |
[18] | Gyrya V, Berlyand L, Aranson I, Karpeev D (2009) A model of hydrodynamic interaction between swimming bacteria. Bull Math Biol 72: 148–183 ·Zbl 1184.92007 ·doi:10.1007/s11538-009-9442-6 |
[19] | Haines B, Aranson I, Berlyand L, Karpeev D (2008) Effective viscosity of dilute bacterial suspensions: a two-dimensional model. Phys Biol 5:046003:1–9 ·Zbl 1318.92035 |
[20] | Haines BM, Sokolov A, Aranson IS, Berlyand L, Karpeev DA (2009) Three-dimensional model for the effective viscosity of bacterial suspensions. Phys Rev E 80: 041922 ·doi:10.1103/PhysRevE.80.041922 |
[21] | Hatwalne Y, Ramaswamy S, Rao M, Simha RA (2004) Rheology of active-particle suspensions. Phys Rev Lett 92: 118101 ·doi:10.1103/PhysRevLett.92.118101 |
[22] | Hernandez-Ortiz J, Stoltz C, Graham M (2005) Transport and collective dynamics in suspensions of confined swimming particles. Phys Rev Lett 95:204501:1–4 |
[23] | Hinch EJ, Leal LG (1972) The effect of brownian motion on the rheological properties of a suspension of non-spherical particles. J Fluid Mech 52(4): 683–712 ·Zbl 0246.76105 ·doi:10.1017/S002211207200271X |
[24] | Ishikawa T, Pedley TJ (2007) The rheology of a semi-dilute suspension of swimming model micro-organisms. J Fluid Mech 588: 399–435 ·Zbl 1141.76464 |
[25] | Ishikawa T, Pedley TJ (2007) Diffusion of swimming model micro-organisms in a semi-dilute suspension. J Fluid Mech 588: 437–462 ·Zbl 1141.76485 |
[26] | Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond Ser A 102: 161–179 ·JFM 49.0748.02 ·doi:10.1098/rspa.1922.0078 |
[27] | Leal LG, Hinch EJ (1971) The effect of weak brownian rotations on particles in shear flow. J Fluid Mech 46(4): 685–703 ·Zbl 0218.76050 ·doi:10.1017/S0022112071000788 |
[28] | Leptos KC, Guasto JS, Gollub JP, Pesci AI, Goldstein RE (2009) Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys Rev Lett 103: 198103 ·doi:10.1103/PhysRevLett.103.198103 |
[29] | Levy T, Sanchez-Palencia E (1983) Suspension of solid particles in a newtonian fluid. J Fluid Mech 56: 401–427 ·Zbl 0538.76103 |
[30] | Najafi A, Golestanian R (2004) Simple swimmer and low reynolds number: three linked spheres. Phys Rev E 69: 062901 ·doi:10.1103/PhysRevE.69.062901 |
[31] | Nasseri S, Phan-Thien N (1997) Hydrodynamic interaction between two nearby swimming micromachines. Comput Mech 20: 551–559 ·Zbl 0910.76100 ·doi:10.1007/s004660050275 |
[32] | Nunan KC, Keller JB (1984) Effective viscosity of periodic suspensions. J Fluid Mech 142: 269–287 ·Zbl 0595.76104 ·doi:10.1017/S0022112084001105 |
[33] | Purcell E (1977) Life at low Reynolds number. Am J Phys 309(45): 3–11 ·doi:10.1119/1.10903 |
[34] | Saintillan S, Shelley M (2007) Orientational order and instabilities in suspensions of self-locomoting rods. Phys Rev Lett 99:058102:1–4 |
[35] | Short M, Solari C, Ganguly S, Powers T, Kessler J, Goldstein R (2006) Flows driven by flagella of multicellular organisms enhance long-range molecular transport. Proc Natl Acad Sci USA 103: 8315–8319 ·doi:10.1073/pnas.0600566103 |
[36] | Sokolov A, Aranson IS (2009) Reduction of viscosity in suspension of swimming bacteria. Phys Rev Lett 103: 148101 ·doi:10.1103/PhysRevLett.103.148101 |
[37] | Sokolov A, Goldstein RE, Feldchtein FI, Aranson IS (2009) Enhanced mixing and spatial instability in concentrated bacterial suspensions. Phys Rev E (Statistical, Nonlinear, and Soft Matter Physics) 80(3): 031903 ·doi:10.1103/PhysRevE.80.031903 |
[38] | Sokolov A, Aranson I, Kessler J, Goldstein R (2007) Concentration dependence of the collective dynamics of swimming bacteria. Phys Rev Lett 98:158102:1–4 |
[39] | Sokolov A, Apodaca MM, Grzybowski BA, Aranson IS (2010) Swimming bacteria power microscopic gears. Proc Natl Acad Sci USA 107: 969–974 ·doi:10.1073/pnas.0913015107 |
[40] | Taylor G (1951) Analysis of the swimming of microscopic organisms. Proc R Soc Lond Ser A 209: 447–461 ·Zbl 0043.40302 ·doi:10.1098/rspa.1951.0218 |
[41] | Tuval I, Cisneros L, Dombrowski C, Wolgemuth CW, Kessler JO, Goldstein RE (2005) Bacterial swimming and oxygen transport near contact lines. Proc Natl Acad Sci 102: 2277–2282 ·Zbl 1277.35332 ·doi:10.1073/pnas.0406724102 |
[42] | Underhill PT, Hernandez-Ortiz JP, Graham MD (2008) Diffusion and spatial correlations in suspensions of swimming particles. Phys Rev Lett 100:248101–1–4 |
[43] | Wu X-L, Libchaber A (2000) Particle diffusion in a quasi-two-dimensional bacterial bath. Phys Rev Lett 84: 3017–3020 ·doi:10.1103/PhysRevLett.84.3017 |