Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Toric varieties.(English)Zbl 1223.14001

Graduate Studies in Mathematics 124. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-4819-7/hbk). xxiv, 841 p. (2011).
The study of toric varieties is a highly interesting part of algebraic geometry, having deep connections with polytopes, polyhedra, combinatorics, commutative algebra, symplectic geometry and topology while being of unexpected applications in such diverse areas as physics, coding theory, algebraic statistics and geometric modeling. The concreteness of toric varieties enables one to grasp the meaning of the powerful techniques of modern algebraic geometry firmly, providing a fertile testing ground for general theories.
This book is a good introduction to this rich subject, providing more details with numerous examples, figures and exercises than existing books [G. Ewald, Combinatorial convexity and algebraic geometry. Graduate Texts in Mathematics. 168. New York, NY: Springer (1996;Zbl 0869.52001);W. Fulton, Introduction to toric varieties. Annals of Mathematics Studies. 131. Princeton, NJ: Princeton University Press (1993;Zbl 0813.14039);T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Bd. 15. Berlin etc.: Springer-Verlag (1988;Zbl 0628.52002)].
The book, consisting of 15 chapters, begins with affine toric varieties in Chapter 1 and projective toric varieties in Chapter 2. Chapter 3 is concerned with normal varieties, though the definition of variety does not assume normalcy. Chapter 4 considers Weil divisors and Cartier divisors, which coincide on a smooth variety, but whose relationship is more complicated for a normal variety. It is shown that normal varieties are the natural setting to develop a theory of divisors and divisor classes. Chapter 5 demonstrates that the classical construction \(\mathbb{P}^{n}\)can be generalized to any toric vaiety \(X_{\Sigma}\). Chapter 6 relates Cartier divisors to invertible sheaves on \(X_{\Sigma}\). The structure of the nef cone and its dual called the Mori cone is described in detail. In Chapter 7 the authors extend the relation between polytopes and projective toric varieties to that between polyhedra and projective toric morphisms \(\phi:X_{\Sigma}\rightarrow U_{\Sigma}\). Projective bundles over a toric variety are discussed, so that smooth projective toric varieties of Picard number \(2\)are classified. In Chapter 8 Weil divisors are related to reflexive sheaves of rank one, where Zariski \(p\)-forms are defined. Chapter 9 is devoted to sheaf cohomology. Chapter 10 is concerned with the structure of \(2\)-dimensional normal toric varieties (toric surfaces). Their singularities are described, and smooth complete toric surfaces are classified. Chapter 11 establishes the existence of toric resolutions of singularities for toric varieties of all dimensions. The goal in Chapter 12 is to understand some topological invariants of a toric variety \(X\) with applications to polytopes. Chapter 13 proves the Hirzebruch-Riemann-Roch theorem for a line bundle \(\mathcal{O}_{X}(D)\) on a smooth complete toric variety \(X_{\Sigma}\). Chapters 14 and 15 study the GIT (Geometric Invariant Theory) quotients \(\mathbb{C} ^{r}//_{\chi}G\) as \(\chi\in\widehat{G}\) varies. The full story of what happens as \(\chi\) varies is controlled by the secondary fan, which is the main topic of the last section of Chapter 14. The aim in Chapter 15 is to understand the structure of the GKZ (Gel’fand, Kapranov and Zelevinsky) cones and what happens to the associated toric varieties as one moves around the secondary fan. The book is accompanied by three appendices on the history of toric varieties, computational methods and spectral sequences.

MSC:

14-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to algebraic geometry
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14C17 Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry
14C15 (Equivariant) Chow groups and rings; motives

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp