Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The non-commutative \(A\)-polynomial of twist knots.(English)Zbl 1222.57008

S. Garoufalidis andT. T. Q. Lê [Geom. Topol. 9, 1253–1293 (2005;Zbl 1078.57012)] proved that the colored Jones function of a knot \(K\), i.e., the function which maps each positive integer \(n\) to the colored Jones polynomial of \(K\) associated with the \(n\)-dimensional irreducible representation of the quantum group \(U_q(sl_2)\), is \(q\)-holonomic in the sense that the function satisfies a linear \(q\)-difference equation with coefficients in \(\mathbb{Q}(q,q^n)\). The \(q\)-holonomicity of the colored Jones function implies that there is a minimal recurrence relation expressed by a noncommutative polynomial in two variables \(E\) and \(Q\) with coefficients in \(\mathbb{Z}[q,q^{-1}]\), where \(E\) corresponds to the shift of \(n\) by \(1\) and \(Q\) corresponds to multiplication of \(q^n\). This noncommutative polynomial is called the noncommutative \(A\)-polynomial.
S. Garoufalidis [Geometry and Topology Monographs 7, 291–309 (2004;Zbl 1080.57014)] conjectured that the noncommutative \(A\)-polynomial with \(q=1\) is equal to the \(A\)-polynomial introduced byD. Cooper, M. Culler, H. Gillet, D. D. Long andP. B. Shalen [Invent. Math. 118, No. 1, 47–84 (1994;Zbl 0842.57013)]. This conjecture is called the AJ-conjecture.
In the paper under review, by introducing a multi-certificate version of creative telescoping method, the authors explicitly compute the noncommutative \(A\)-polynomial for the twist knot with \(p\) full twist with \(-15\leq p\leq 15\). This result implies a new proof of the AJ-conjecture for those knots.

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
57N10 Topology of general \(3\)-manifolds (MSC2010)
57M25 Knots and links in the \(3\)-sphere (MSC2010)

Software:

qZeil;SIGMA

Cite

References:

[1]DOI: 10.1016/S0041-5553(89)80002-3 ·Zbl 0719.65063 ·doi:10.1016/S0041-5553(89)80002-3
[2]DOI: 10.1016/j.aam.2005.09.003 ·Zbl 1108.05010 ·doi:10.1016/j.aam.2005.09.003
[3]DOI: 10.1080/10586458.1998.10504357 ·Zbl 0932.11069 ·doi:10.1080/10586458.1998.10504357
[4]DOI: 10.1007/BF01231526 ·Zbl 0842.57013 ·doi:10.1007/BF01231526
[5]DOI: 10.2140/gt.2005.9.1253 ·Zbl 1078.57012 ·doi:10.2140/gt.2005.9.1253
[6]Garoufalidis S., Asymptotics of the Colored Jones Function of a Knot (2005) ·Zbl 1092.57011
[7]Garoufalidis S., Geometry and Topology Monographs 7 pp 291– (2004) ·doi:10.2140/gtm.2004.7.291
[8]DOI: 10.2140/agt.2006.6.1623 ·Zbl 1131.57013 ·doi:10.2140/agt.2006.6.1623
[9]Garoufalidis S., Computer Data on the Non-Commutative A-Polynomial of Twist Knots (2008)
[10]DOI: 10.1090/S0002-9939-01-06157-3 ·Zbl 0994.57014 ·doi:10.1090/S0002-9939-01-06157-3
[11]Habiro K., Geom. Topol. Monogr. 4 pp 55–
[12]DOI: 10.1142/S0218216504003081 ·Zbl 1057.57010 ·doi:10.1142/S0218216504003081
[13]DOI: 10.1142/S0218216501001049 ·Zbl 1003.57014 ·doi:10.1142/S0218216501001049
[14]DOI: 10.2307/1971403 ·Zbl 0631.57005 ·doi:10.2307/1971403
[15]DOI: 10.1017/CBO9780511623929 ·doi:10.1017/CBO9780511623929
[16]DOI: 10.1016/0377-0427(93)90317-5 ·Zbl 0797.65011 ·doi:10.1016/0377-0427(93)90317-5
[17]DOI: 10.1016/j.aim.2006.01.006 ·Zbl 1114.57014 ·doi:10.1016/j.aim.2006.01.006
[18]Masbaum G., Skein-Theoretical Derivation of Some Formulas of Habiro (2002) ·Zbl 1042.57005
[19]P. Paule and A. Riese, Special Functions, q-Series and Related Topics, Fields Institute Communications 14 (1997) pp. 179–210. ·Zbl 0869.33010
[20]Petkovšek M., A = B (1996)
[21]Rolfsen D., Knots and Links (1976) ·Zbl 0339.55004
[22]Schneider C., Sem. Lothar. Combin. 56 pp 1–
[23]Thurston W., Lecture notes, in: The Geometry and Topology of 3-Manifolds (1977)
[24]DOI: 10.1007/BF01393746 ·Zbl 0648.57003 ·doi:10.1007/BF01393746
[25]DOI: 10.1007/BF02100618 ·Zbl 0739.05007 ·doi:10.1007/BF02100618
[26]DOI: 10.1016/0377-0427(90)90042-X ·Zbl 0738.33001 ·doi:10.1016/0377-0427(90)90042-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp