[1] | M. Ballard, Equivalences of derived categories of sheaves on quasi-projective varieties, preprint, arXiv:0905.3148; M. Ballard, Equivalences of derived categories of sheaves on quasi-projective varieties, preprint, arXiv:0905.3148 |
[2] | Bökstedt, M.; Neeman, A., Homotopy limits in triangulated categories, Compos. Math., 86, 2, 209-234 (1993) ·Zbl 0802.18008 |
[3] | Bondal, A.; Kapranov, M., Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat., 53, 6, 1183-1205 (1989), 1337 |
[4] | Bondal, A.; Orlov, D., Reconstruction of a variety from the derived category and groups of autoequivalences, Compos. Math., 125, 3, 327-344 (2001) ·Zbl 0994.18007 |
[5] | Bondal, A.; van den Bergh, M., Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J., 3, 1, 1-36 (2003), 258 ·Zbl 1135.18302 |
[6] | R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, preprint, 1986.; R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, preprint, 1986. |
[7] | Christensen, J. D.; Keller, B.; Neeman, A., Failure of Brown representability in derived categories, Topology, 40, 6, 1339-1361 (2001) ·Zbl 0997.18007 |
[8] | Hartshorne, R., Residues and Duality, Lecture Notes in Math., vol. 20 (1966), Springer-Verlag: Springer-Verlag Berlin, New York, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne ·Zbl 0212.26101 |
[9] | Huybrechts, D., Fourier-Mukai Transforms in Algebraic Geometry, Oxford Math. Monogr. (2006), The Clarendon Press/Oxford University Press: The Clarendon Press/Oxford University Press Oxford ·Zbl 1095.14002 |
[10] | Illusie, L., Existence de résolutions globals, (Théorie des intersections et théorème de Riemann-Roch (1971), Springer-Verlag: Springer-Verlag Berlin), Séminaire de Géométrie Algébrique du Bois-Marie 1966-1967 (SGA 6), pp. xii+700 |
[11] | B. Keller, D. Murfet, M. Van den Bergh, On two examples by Iyama and Yoshino, preprint, arXiv:0803.0720v1; B. Keller, D. Murfet, M. Van den Bergh, On two examples by Iyama and Yoshino, preprint, arXiv:0803.0720v1 ·Zbl 1264.13016 |
[12] | Krause, H., Smashing subcategories and the telescope conjecture—an algebraic approach, Invent. Math., 139, 1, 99-133 (2000) ·Zbl 0937.18013 |
[13] | Lunts, V.; Orlov, D., Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc., 23, 853-908 (2010) ·Zbl 1197.14014 |
[14] | Neeman, A., The connection between the \(K\)-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. (4), 25, 5, 547-566 (1992) ·Zbl 0868.19001 |
[15] | Neeman, A., The Grothendieck duality theorem via Bousfieldʼs techniques and Brown representability, J. Amer. Math. Soc., 9, 1, 205-236 (1996) ·Zbl 0864.14008 |
[16] | Orlov, D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Algebr. Geom. Metody, Svyazi i Prilozh.. Algebr. Geom. Metody, Svyazi i Prilozh., Tr. Mat. Inst. Steklova, 246, 240-262 (2004) ·Zbl 1101.81093 |
[17] | Orlov, D., Triangulated categories of singularities, and equivalences between Landau-Ginzburg models, Mat. Sb., 12, 197, 117-132 (2006) ·Zbl 1161.14301 |
[18] | Roberts, P., Homological Invariants of Modules over Commutative Rings, Séminaire de Mathématiques Supérieures, vol. 72 (1980), Presses de lʼUniversité de Montréal: Presses de lʼUniversité de Montréal Montreal, Que. ·Zbl 0467.13007 |
[19] | Rouquier, R., Catégories dérivées et géométrie algébrique. Exposés à la semaine « Géométrie algébrique complexe » (2003), Luminy |
[20] | Rouquier, R., Dimensions of triangulated categories, J. K-Theory, 1, 2, 193-256 (2008) ·Zbl 1165.18008 |
[21] | Thomason, R. W.; Trobaugh, T., Higher algebraic \(K\)-theory of schemes and of derived categories, (The Grothendieck Festschrift, vol. III. The Grothendieck Festschrift, vol. III, Progr. Math., vol. 88 (1990), Birkhäuser Boston: Birkhäuser Boston Boston, MA) ·Zbl 0731.14001 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.