Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Derived categories of sheaves on singular schemes with an application to reconstruction.(English)Zbl 1213.14031

If \(X\) is a (quasi-)projective variety, there are several triangulated categories naturally associated to it: Probably the most common ones are the bounded derived category of coherent sheaves \({\text D}^{\text b}(X)\) and its full triangulated subcategory of perfect complexes \({\text{Perf}}(X)\), which is roughly the smallest triangulated subcategory of \({\text D}^{\text b}(X)\) containing all finite-rank locally free sheaves. These categories coincide if and only if \(X\) is smooth.
In recent years it has become commonplace to investigate the geometry of a smooth projective variety through its bounded derived category of coherent sheaves, so most of the results are formulated, and the proofs usually only work, under the smoothness assumption. In the article under review the author extends two such results to the singular case.
Firstly,A.Bondal andM.van den Bergh proved [Mosc.Math.J.3, No.1, 1–36 (2003;Zbl 1135.18302)] that for a smooth and proper variety \(X\) any covariant or contravariant locally-finite (a certain boundedness condition) cohomological functor from \({\text D}^{\text b}(X)\) to the category of vector spaces is representable. Furthermore, \({\text D}^{\text b}(X)\) is equivalent to either of these categories of functors. The first main result of this paper states that dropping the smoothness one has that \({\text D}^{\text b}(X)\) is equivalent to the category of locally-finite, cohomological functors on \({\text{Perf}}(X)\). The proof uses the machinery of compactly-generated triangulated categories.
Secondly, a result ofA.Bondal andD.Orlov [Compos.Math.125, No.3, 327–344 (2001;Zbl 0994.18007)] says that if a smooth and projective variety \(X\) has ample or anti-ample canonical bundle, then any variety \(Y\) satisfying \({\text D}^{\text b}(X)\cong{\text D}^{\text b}(Y)\) is isomorphic to \(X\). The author extends this result to the case where \(X\) is projective Gorenstein using, in particular, a relativization of the notion of a Serre functor.
Besides the above mentioned results the author also proves that two projective schemes have equivalent bounded derived categories if and only if the respective categories of perfect complexes are equivalent. Furthermore, for a projective scheme \(X\) the groups of autoequivalences of \({\text D}^{\text b}(X)\) and of \({\text{Perf}}(X)\) coincide. This result is proved using so-called pseudo-adjoint functors.

MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
18E30 Derived categories, triangulated categories (MSC2010)

Cite

References:

[1]M. Ballard, Equivalences of derived categories of sheaves on quasi-projective varieties, preprint, arXiv:0905.3148; M. Ballard, Equivalences of derived categories of sheaves on quasi-projective varieties, preprint, arXiv:0905.3148
[2]Bökstedt, M.; Neeman, A., Homotopy limits in triangulated categories, Compos. Math., 86, 2, 209-234 (1993) ·Zbl 0802.18008
[3]Bondal, A.; Kapranov, M., Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat., 53, 6, 1183-1205 (1989), 1337
[4]Bondal, A.; Orlov, D., Reconstruction of a variety from the derived category and groups of autoequivalences, Compos. Math., 125, 3, 327-344 (2001) ·Zbl 0994.18007
[5]Bondal, A.; van den Bergh, M., Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J., 3, 1, 1-36 (2003), 258 ·Zbl 1135.18302
[6]R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, preprint, 1986.; R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, preprint, 1986.
[7]Christensen, J. D.; Keller, B.; Neeman, A., Failure of Brown representability in derived categories, Topology, 40, 6, 1339-1361 (2001) ·Zbl 0997.18007
[8]Hartshorne, R., Residues and Duality, Lecture Notes in Math., vol. 20 (1966), Springer-Verlag: Springer-Verlag Berlin, New York, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne ·Zbl 0212.26101
[9]Huybrechts, D., Fourier-Mukai Transforms in Algebraic Geometry, Oxford Math. Monogr. (2006), The Clarendon Press/Oxford University Press: The Clarendon Press/Oxford University Press Oxford ·Zbl 1095.14002
[10]Illusie, L., Existence de résolutions globals, (Théorie des intersections et théorème de Riemann-Roch (1971), Springer-Verlag: Springer-Verlag Berlin), Séminaire de Géométrie Algébrique du Bois-Marie 1966-1967 (SGA 6), pp. xii+700
[11]B. Keller, D. Murfet, M. Van den Bergh, On two examples by Iyama and Yoshino, preprint, arXiv:0803.0720v1; B. Keller, D. Murfet, M. Van den Bergh, On two examples by Iyama and Yoshino, preprint, arXiv:0803.0720v1 ·Zbl 1264.13016
[12]Krause, H., Smashing subcategories and the telescope conjecture—an algebraic approach, Invent. Math., 139, 1, 99-133 (2000) ·Zbl 0937.18013
[13]Lunts, V.; Orlov, D., Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc., 23, 853-908 (2010) ·Zbl 1197.14014
[14]Neeman, A., The connection between the \(K\)-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. (4), 25, 5, 547-566 (1992) ·Zbl 0868.19001
[15]Neeman, A., The Grothendieck duality theorem via Bousfieldʼs techniques and Brown representability, J. Amer. Math. Soc., 9, 1, 205-236 (1996) ·Zbl 0864.14008
[16]Orlov, D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Algebr. Geom. Metody, Svyazi i Prilozh.. Algebr. Geom. Metody, Svyazi i Prilozh., Tr. Mat. Inst. Steklova, 246, 240-262 (2004) ·Zbl 1101.81093
[17]Orlov, D., Triangulated categories of singularities, and equivalences between Landau-Ginzburg models, Mat. Sb., 12, 197, 117-132 (2006) ·Zbl 1161.14301
[18]Roberts, P., Homological Invariants of Modules over Commutative Rings, Séminaire de Mathématiques Supérieures, vol. 72 (1980), Presses de lʼUniversité de Montréal: Presses de lʼUniversité de Montréal Montreal, Que. ·Zbl 0467.13007
[19]Rouquier, R., Catégories dérivées et géométrie algébrique. Exposés à la semaine « Géométrie algébrique complexe » (2003), Luminy
[20]Rouquier, R., Dimensions of triangulated categories, J. K-Theory, 1, 2, 193-256 (2008) ·Zbl 1165.18008
[21]Thomason, R. W.; Trobaugh, T., Higher algebraic \(K\)-theory of schemes and of derived categories, (The Grothendieck Festschrift, vol. III. The Grothendieck Festschrift, vol. III, Progr. Math., vol. 88 (1990), Birkhäuser Boston: Birkhäuser Boston Boston, MA) ·Zbl 0731.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp