[1] | Achter, Jeffrey D., The distribution of class groups of function fields, J. Pure Appl. Algebra, 204, 2, 316-333 (2006) ·Zbl 1134.11042 |
[2] | Andrews, George E., The Theory of Partitions, Encyclopedia Math. Appl., vol. 2 (1976), Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Reading, MA, London, Amsterdam, MR 0557013 (58 #27738) ·Zbl 0371.10001 |
[3] | Bennett, Curtis; Dempsey, Kathy J.; Sagan, Bruce E., Partition lattice \(q\)-analogs related to \(q\)-Stirling numbers, J. Algebraic Combin., 3, 3, 261-283 (1994), MR 1285496 (95h:05014) ·Zbl 0849.05004 |
[4] | Cohen, H.; Lenstra, H. W., Heuristics on class groups of number fields, (Number Theory. Number Theory, Noordwijkerhout, 1983. Number Theory. Number Theory, Noordwijkerhout, 1983, Lecture Notes in Math., vol. 1068 (1984), Springer: Springer Berlin), 33-62, MR 756082 (85j:11144) ·Zbl 0558.12002 |
[5] | Cohen, Henri, On the \(p^k\)-rank of finite abelian groups and Andrews’ generalizations of the Rogers-Ramanujan identities, Nederl. Akad. Wetensch. Indag. Math., 47, 4, 377-383 (1985), MR MR820930 (87g:20091) ·Zbl 0581.05008 |
[6] | Cohen, Henri; Martinet, Jacques, Class groups of number fields: numerical heuristics, Math. Comp., 48, 177, 123-137 (1987), MR 866103 (88e:11112) ·Zbl 0627.12006 |
[7] | Cohen, Henri; Martinet, Jacques, Étude heuristique des groupes de classes des corps de nombres, J. Reine Angew. Math., 404, 39-76 (1990), MR 1037430 (91k:11097) ·Zbl 0699.12016 |
[8] | Evans, Steven N., Elementary divisors and determinants of random matrices over a local field, Stochastic Process. Appl., 102, 1, 89-102 (2002), MR MR1934156 (2004c:15041) ·Zbl 1075.15500 |
[9] | Friedman, Eduardo; Washington, Lawrence C., On the distribution of divisor class groups of curves over a finite field, (Théorie des nombres. Théorie des nombres, Quebec, PQ, 1987 (1989), de Gruyter: de Gruyter Berlin), 227-239, MR 1024565 (91e:11138) ·Zbl 0693.12013 |
[10] | Jason Fulman, Probability in the classical groups over finite fields: symmetric functions, stochastic algorithms and cycle indices, PhD thesis, Harvard University, 1997; Jason Fulman, Probability in the classical groups over finite fields: symmetric functions, stochastic algorithms and cycle indices, PhD thesis, Harvard University, 1997 |
[11] | Fulman, Jason, A probabilistic approach toward conjugacy classes in the finite general linear and unitary groups, J. Algebra, 212, 2, 557-590 (1999), MR 1676854 (2000c:20072) ·Zbl 0980.20036 |
[12] | Fulman, Jason, The Rogers-Ramanujan identities, the finite general linear groups, and the Hall-Littlewood polynomials, Proc. Amer. Math. Soc., 128, 1, 17-25 (2000), MR 1657747 (2000h:05229) ·Zbl 1005.11050 |
[13] | Fulman, Jason, A probabilistic proof of the Rogers-Ramanujan identities, Bull. Lond. Math. Soc., 33, 4, 397-407 (2001), MR MR1832551 (2002b:11146) ·Zbl 1040.11074 |
[14] | Jason Fulman, Email contact, 2008; Jason Fulman, Email contact, 2008 |
[15] | Gauß, Carl Friedrich, Disquisitiones arithmeticae (1801), Springer: Springer Berlin, Leipzig ·Zbl 0136.32301 |
[16] | Gerstenhaber, Murray, On the number of nilpotent matrices with coefficients in a finite field, Illinois J. Math., 5, 330-333 (1961), MR 0130875 (24 #A729) ·Zbl 0102.01602 |
[17] | Hall, P., A partition formula connected with abelian groups, Comment. Math. Helv., 11, 1, 126-129 (1938) ·Zbl 0019.39705 |
[18] | Kung, Joseph P. S., The cycle structure of a linear transformation over a finite field, Linear Algebra Appl., 36, 141-155 (1981), MR 604337 (82d:15012) ·Zbl 0477.05008 |
[19] | Lengler, Johannes, A combinatorial interpretation of the probabilities of \(p\)-groups in the Cohen-Lenstra measure, J. Number Theory, 128, 7, 2070-2084 (2008), MR 2423750 ·Zbl 1180.05125 |
[20] | Johannes Lengler, The Cohen-Lenstra heuristic for finite abelian groups, PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, 2009; Johannes Lengler, The Cohen-Lenstra heuristic for finite abelian groups, PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, 2009 ·Zbl 1294.11200 |
[21] | Malle, Gunter, The totally real primitive number fields of discriminant at most \(10^9\), (Algorithmic Number Theory. Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 4076 (2006), Springer: Springer Berlin), 114-123, MR 2282919 (2007j:11179) ·Zbl 1143.11371 |
[22] | Gunter Malle, On the distribution of class groups of number fields, 2009; Gunter Malle, On the distribution of class groups of number fields, 2009 ·Zbl 1297.11139 |
[23] | Bernd Mehnert, PhD thesis, Universität des Saarlandes, Germany, in press; Bernd Mehnert, PhD thesis, Universität des Saarlandes, Germany, in press |
[24] | Arunas Rudvalis, Ken-ichi Shinoda, An enumeration in finite classical groups, preprint, Department of Mathematics, U-Mass Amherst, 1988; Arunas Rudvalis, Ken-ichi Shinoda, An enumeration in finite classical groups, preprint, Department of Mathematics, U-Mass Amherst, 1988 |
[25] | Stong, Richard, Some asymptotic results on finite vector spaces, Adv. in Appl. Math., 9, 2, 167-199 (1988), MR 937520 (89c:05007) ·Zbl 0681.05004 |
[26] | Stong, Richard, The average order of a matrix, J. Combin. Theory Ser. A, 64, 2, 337-343 (1993), MR 1245166 (94j:11094) ·Zbl 0790.05019 |
[27] | Washington, Lawrence C., Some remarks on Cohen-Lenstra heuristics, Math. Comp., 47, 176, 741-747 (1986) ·Zbl 0627.12002 |