Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Convergent sequences of dense graphs. I: Subgraph frequencies, metric properties and testing.(English)Zbl 1213.05161

Summary: We consider sequences of graphs \((G_n)\) and define various notions of convergence related to these sequences: “left convergence” defined in terms of the densities of homomorphisms from small graphs into \(G_n\); “right convergence” defined in terms of the densities of homomorphisms from \(Gn\) into small graphs; and convergence in a suitably defined metric.
In Part I of this series, we show that left convergence is equivalent to convergence in metric, both for simple graphs \(G_n\), and for graphs \(G_n\) with nodeweights and edgeweights. One of the main steps here is the introduction of a cut-distance comparing graphs, not necessarily of the same size. We also show how these notions of convergence provide natural formulations of Szemerédi partitions, sampling and testing of large graphs.

MSC:

05C42 Density (toughness, etc.)

Cite

References:

[1]N. Alon, W. Fernandez de la Vega, R. Kannan, M. Karpinski, Random sampling and approximation of MAX-CSP problems, in: Proc. of the 34th ACM Symp. Theor. of Comp. (STOC), 2002, pp. 232-239; N. Alon, W. Fernandez de la Vega, R. Kannan, M. Karpinski, Random sampling and approximation of MAX-CSP problems, in: Proc. of the 34th ACM Symp. Theor. of Comp. (STOC), 2002, pp. 232-239 ·Zbl 1192.68865
[2]Alon, N.; Fernandez de la Vega, W.; Kannan, R.; Karpinski, M., Random sampling and approximation of MAX-CSPs, J. Comput. System Sci., 67, 212-243 (2003) ·Zbl 1160.68537
[3]Alon, N.; Fisher, E.; Krivelevich, M.; Szegedy, M., Efficient testing of large graphs, Combinatorica, 20, 451-476 (2000) ·Zbl 1052.68096
[4]N. Alon, E. Fischer, I. Newman, A. Shapira, A combinatorial characterization of the testable graph properties: It’s all about regularity, in: Proc. of the 38th ACM Symp. Theor. of Comp. (STOC), 2006, pp. 251-260; N. Alon, E. Fischer, I. Newman, A. Shapira, A combinatorial characterization of the testable graph properties: It’s all about regularity, in: Proc. of the 38th ACM Symp. Theor. of Comp. (STOC), 2006, pp. 251-260 ·Zbl 1301.05354
[5]Alon, N.; Naor, A., Approximating the cut-norm via Grothendieck’s inequality, (Proc. of the 36 ACM STOC (2004), ACM Press: ACM Press Chicago). (Proc. of the 36 ACM STOC (2004), ACM Press: ACM Press Chicago), SIAM J. Comput., 35, 787-803 (2006), journal version: ·Zbl 1096.68163
[6]N. Alon, A. Shapira, Every monotone graph property is testable, in: Proc. of the 37th ACM Symp. Theor. of Comp. (STOC), 2005, pp. 128-137; N. Alon, A. Shapira, Every monotone graph property is testable, in: Proc. of the 37th ACM Symp. Theor. of Comp. (STOC), 2005, pp. 128-137 ·Zbl 1192.68466
[7]Barabasi, A.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512 (1999) ·Zbl 1226.05223
[8]Benjamini, I.; Schramm, O., Recurrence of distributional limits of finite planar graphs, Electron. J. Probab., 6, 23, 1-13 (2001) ·Zbl 1010.82021
[9]N. Berger, C. Borgs, J.T. Chayes, A. Saberi, On the spread of viruses on the Internet, in: Proc. of the 16th ACM-SIAM Symp. on Discr. Alg. (SODA), 2005, pp. 301-310; N. Berger, C. Borgs, J.T. Chayes, A. Saberi, On the spread of viruses on the Internet, in: Proc. of the 16th ACM-SIAM Symp. on Discr. Alg. (SODA), 2005, pp. 301-310 ·Zbl 1297.68029
[10]B. Bollobas, C. Borgs, J.T. Chayes, O. Riordan, Directed scale-free graphs, in: Proc of the 14th ACM-SIAM Symp. on Discr. Alg. (SODA), 2003, pp. 132-139; B. Bollobas, C. Borgs, J.T. Chayes, O. Riordan, Directed scale-free graphs, in: Proc of the 14th ACM-SIAM Symp. on Discr. Alg. (SODA), 2003, pp. 132-139 ·Zbl 1094.68605
[11]Bollobas, B.; Riordan, O., Mathematical results on scale-free random graphs, (Handbook of Graphs and Networks (2003), Wiley: Wiley Weinheim), 1-34 ·Zbl 1047.05038
[12]Bollobas, B.; Riordan, O., The diameter of a scale-free random graph, Combinatorica, 24, 5-34 (2004) ·Zbl 1047.05038
[13]Bollobas, B.; Riordan, O.; Spencer, J.; Tusnady, G., The degree sequence of a scale-free random graph process, Random Structures Algorithms, 18, 279-290 (2001) ·Zbl 0985.05047
[14]C. Borgs, J. Chayes, L. Lovász, Moments of two-variable functions and the uniqueness of graph limits, preprint, http://arxiv.org/abs/0803.1244; C. Borgs, J. Chayes, L. Lovász, Moments of two-variable functions and the uniqueness of graph limits, preprint, http://arxiv.org/abs/0803.1244 ·Zbl 1223.05193
[15]C. Borgs, J. Chayes, L. Lovász, V.T. Sós, K. Vesztergombi, unpublished, 2003; C. Borgs, J. Chayes, L. Lovász, V.T. Sós, K. Vesztergombi, unpublished, 2003
[16]Borgs, C.; Chayes, J. T.; Lovász, L.; Sós, V. T.; Vesztergombi, K., Counting graph homomorphisms, (Klazar, M.; Kratochvil, J.; Loebl, M.; Matoušek, J.; Thomas, R.; Valtr, P., Topics in Discrete Mathematics (2006), Springer), 315-371 ·Zbl 1129.05050
[17]Borgs, C.; Chayes, J. T.; Lovász, L.; Sós, V. T.; Vesztergombi, K., Convergent graph sequences II. Multiway cuts and statistical physics (2007), preprint ·Zbl 1213.05161
[18]C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, K. Vesztergombi, Convergence of sparse graph sequences, in preparation; C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, K. Vesztergombi, Convergence of sparse graph sequences, in preparation
[19]C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, B. Szegedy, K. Vesztergombi, Graph limits and parameter testing, in: Proc. of the 38th ACM Symp. Theory of Comp., 2006, pp. 261-270; C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, B. Szegedy, K. Vesztergombi, Graph limits and parameter testing, in: Proc. of the 38th ACM Symp. Theory of Comp., 2006, pp. 261-270 ·Zbl 1301.68199
[20]Chung, F.; Graham, R. L.; Wilson, R. M., Quasi-random graphs, Combinatorica, 9, 345-362 (1989) ·Zbl 0715.05057
[21]Erdös, P.; Lovász, L.; Spencer, J., Strong independence of graphcopy functions, (Graph Theory and Related Topics (1979), Academic Press), 165-172 ·Zbl 0462.05057
[22]E. Fischer, I. Newman, Testing versus estimation of graph properties, in: Proc. 37th Ann. ACM Symp. on Theory of Computing, Baltimore, MD, 2005, pp. 138-146; E. Fischer, I. Newman, Testing versus estimation of graph properties, in: Proc. 37th Ann. ACM Symp. on Theory of Computing, Baltimore, MD, 2005, pp. 138-146 ·Zbl 1192.68480
[23]Frieze, A.; Kannan, R., Quick approximation to matrices and applications, Combinatorica, 19, 175-220 (1999) ·Zbl 0933.68061
[24]Goldreich, O.; Goldwasser, S.; Ron, D., Property testing and its connection to learning and approximation, J. ACM, 45, 653-750 (1998) ·Zbl 1065.68575
[25]R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, E. Upfal, Stochastic models for the web graph, in: Proc. of the 41th ACM Found. of Comp. Sci. (FOCS), 2000, pp. 57-65; R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, E. Upfal, Stochastic models for the web graph, in: Proc. of the 41th ACM Found. of Comp. Sci. (FOCS), 2000, pp. 57-65
[26]Lovász, L.; Szegedy, B., Limits of dense graph sequences, J. Combin. Theory Ser. B, 96, 933-957 (2006) ·Zbl 1113.05092
[27]L. Lovász, B. Szegedy, Graph limits and testing hereditary graph properties, J. Math., in press, http://arxiv.org/abs/0803.1248; L. Lovász, B. Szegedy, Graph limits and testing hereditary graph properties, J. Math., in press, http://arxiv.org/abs/0803.1248
[28]Lovász, L.; Szegedy, B., Szemerédi’s lemma for the analyst, Geom. Func. Anal., 17, 252-270 (2007) ·Zbl 1123.46020
[29]Rudin, W., Real and Complex Analysis (1987), McGraw-Hill: McGraw-Hill New York ·Zbl 0925.00005
[30]E. Szemerédi, Regular partitions of graphs, in: J.-C. Bermond, J.-C. Fournier, M. Las Vergnas, D. Sotteau (Eds.), Colloque Inter. CNRS, 1978, pp. 399-401; E. Szemerédi, Regular partitions of graphs, in: J.-C. Bermond, J.-C. Fournier, M. Las Vergnas, D. Sotteau (Eds.), Colloque Inter. CNRS, 1978, pp. 399-401 ·Zbl 0413.05055
[31]Thomason, A., Pseudorandom graphs, (Random Graphs ’85. Random Graphs ’85, North-Holland Math. Stud., vol. 144 (1987), North-Holland: North-Holland Amsterdam), 307-331 ·Zbl 0632.05045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp