Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Growth of balls of holomorphic sections and energy at equilibrium.(English)Zbl 1208.32020

Let \(L\) be a big line bundle on a compact complex manifold \(X\). Given a non-pluripolar compact set \(K\subset X\) and a continuous Hermitian metric \(e^{-\phi}\) on \(L\), the authors define \({\mathcal E}_{eq}(K,\phi)\), the energy at equilibrium of \((K,\phi)\), as the Monge-Ampère energy \(\mathcal E\) of the extremal plurisubharmonic weight \(P_K\phi\) (upper envelope of plurisubharmonic weights not exceeding \(\phi\) on \(K\)), given by \[ {d\over dt}{\mathcal E}((1-t)\phi_1+t\phi_2)|_{t=0}=\int_x(\phi_2-\phi_1)(dd^c\phi_1)^n.\] The functional \(\phi\mapsto {\mathcal E}_{eq}(K,\phi)\) is shown to be concave, continuous and Gâteau differentiable. Furthermore, this energy describes the asymptotic behavior, as \(k\to\infty\), of the volume of the unit ball \({\mathcal B}^\infty(K,k\phi)\) in the space \(H^0(kL)\) of global holomorphic sections in the \(L^\infty\)-norm as follows. Let \[ {\mathcal L}_k(K,\phi)=(2k h^0(kL))^{-1} \log\text{vol}_k{\mathcal B}^\infty(K,k\phi), \] then \({\mathcal L}_k(K_1,\phi_1) -{\mathcal L}_k(K_2,\phi_2)\to {\mathcal E}_{eq}(K_1,\phi_1)-{\mathcal E}_{eq}(K_2,\phi_2)\); here \(\text{vol}_k\) is the Lebesgue measure on the vector space \(H^0(kL)\). A similar formula is obtained for the volumes of the unit balls \({\mathcal B}^2(\mu,k\phi)\) in \(H^0(kL)\) with respect to \(L^2(\mu)\) for a probability measure \(\mu\) on K with the Bernstein-Markov property. As a corollary, Zaharjuta’s and Rumelely’s results on transfinite diameter are extended to the case of big line bundles. Applications to Arakelov geometry (an asymptotic description of the analytic torsion and an equidistribution theorem for algebraic points of small height) are given as well.

MSC:

32J25 Transcendental methods of algebraic geometry (complex-analytic aspects)
32A36 Bergman spaces of functions in several complex variables
32C05 Real-analytic manifolds, real-analytic spaces
32J27 Compact Kähler manifolds: generalizations, classification
32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results
32U15 General pluripotential theory
32W20 Complex Monge-Ampère operators

Cite

References:

[1]Aleksandrov, A.D.: On the theory of mixed volumes of convex bodies III: Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. Mat. Sb. 3(1), 27–44 (1938) (Russian). [English translation available in Selected works Part I: Selected scientific papers. Gordon and Breach]
[2]Aubin, T.: Réduction du cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité. J. Funct. Anal. 57(2), 143–153 (1984) ·Zbl 0538.53063 ·doi:10.1016/0022-1236(84)90093-4
[3]Bassanelli, G., Bertoloot, F.: Bifurcation currents in holomorphic dynamics on \(\mathbb{P}\) n . J. Reine Angew. Math. 608, 201–235 (2007) ·Zbl 1136.37025 ·doi:10.1515/CRELLE.2007.058
[4]Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149(1–2), 1–40 (1982) ·Zbl 0547.32012 ·doi:10.1007/BF02392348
[5]Bedford, E., Taylor, B.A.: Fine topology, Šilov boundary, and (dd c ) n . J. Funct. Anal. 72(2), 225–251 (1987) ·Zbl 0677.31005 ·doi:10.1016/0022-1236(87)90087-5
[6]Berman, R.: Bergman kernels and equilibrium measures for line bundles over projective manifolds. Preprint (2007). arXiv:0710.4375
[7]Berman, R.: Determinantal point processes and fermions on compex manifolds: bulk universality. Preprint (2008). arXiv:0811.3341
[8]Berman, R.: Large deviations and entropy for determinantal point processes on complex manifolds. Preprint (2008). arXiv:0812.4224
[9]Berman, R.: Bergman kernels for weighted polynomials and weighted equilibrium measures of \(\mathbb{C}\) n . Indiana Univ. Math. J. 58(4), 1921–1946 (2009) ·Zbl 1175.32002 ·doi:10.1512/iumj.2009.58.3644
[10]Berman, R., Boucksom, S.: Equidistribution of Fekete points on complex manifolds. Preprint (2008). arXiv:0807.0035
[11]Berman, R., Demailly, J.-P.: Regularity of plurisubharmonic upper envelopes in big cohomology classes. Preprint (2009). arXiv:0905.1246 ·Zbl 1258.32010
[12]Berman, R., Witt Nyström, D.: Convergence of Bergman measures for high powers of a line bundle. Preprint (2008). arXiv:0805.2846
[13]Berman, R., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to complex Monge-Ampère equations. Preprint (2009). arXiv:0907.4490 ·Zbl 1277.32049
[14]Berman, R., Boucksom, S., Witt Nyström, D.: Fekete points and convergence towards equilibrium measures on complex manifolds. Preprint (2009). arXiv:0907.2820 ·Zbl 1241.32030
[15]Berndtsson, B.: Bergman kernels related to Hermitian line bundles over compact complex manifolds. In: Explorations in Complex and Riemannian Geometry. Contemp. Math., vol. 332, pp. 1–17. Am. Math. Soc., Providence (2003) ·Zbl 1038.32003
[16]Berndtsson, B.: Positivity of direct image bundles and convexity on the space of Kähler metrics. J. Diff. Geom. 81(3), 457–482 (2009) ·Zbl 1187.53076
[17]Bismut, J.-M., Vasserot, E.: The asymptotics of the Ray-Singer analytic torsion associated with high powers of a positive line bundle. Commun. Math. Phys. 125(2), 355–367 (1989) ·Zbl 0687.32023 ·doi:10.1007/BF01217912
[18]Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles. I–III. Direct images and Bott-Chern forms. Commun. Math. Phys. 115 (1988) ·Zbl 0651.32017
[19]Bloom, T., Levenberg, N.: Strong asymptotics for Christoffel functions of planar measures. Preprint (2007). arXiv:0709.2073 ·Zbl 1158.28001
[20]Bloom, T., Levenberg, N.: Transfinite diameter notions in \(\mathbb{C}\) N and integrals of Vandermonde determinants. Preprint (2007). arXiv:0712.2844 ·Zbl 1196.31003
[21]Bombieri, E., Gubler, W.: Heights in Diophantine Geometry. New Mathematical Monographs, vol. 4. Cambridge University Press, Cambridge (2006) ·Zbl 1115.11034
[22]Bonavero, L.: Inégalités de Morse holomorphes singulières. J. Geom. Anal. 8(3), 409–425 (1998) ·Zbl 0966.32011
[23]Bouche, T.: Convergence de la métrique de Fubini-Study d’un fibré linéaire positif. Ann. Inst. Fourier 40(1), 117–130 (1990) ·Zbl 0685.32015
[24]Boucksom, S.: On the volume of a line bundle. Int. J. Math. 13(10), 1043–1063 (2002) ·Zbl 1101.14008 ·doi:10.1142/S0129167X02001575
[25]Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: Monge-Ampère equations in big cohomology classes. Preprint (2008). arXiv:0812.3674 . To appear in Acta Math. ·Zbl 1213.32025
[26]Boucksom, S., Favre, C., Jonsson, M.: Valuations and plurisubharmonic singularities. Publ. Res. Inst. Math. Sci. 44(2), 449–494 (2008) ·Zbl 1146.32017 ·doi:10.2977/prims/1210167334
[27]Boucksom, S., Favre, C., Jonsson, M.: Differentiability of volumes of divisors and a problem of Teissier. J. Algebraic Geom. 18, 279–308 (2009) ·Zbl 1162.14003
[28]Catlin, D.: The Bergman kernel and a theorem of Tian. In: Analysis and Geometry in Several Complex Variables, Katata, 1997. Trends Math., pp. 1–23. Birkhäuser, Boston (1999)
[29]Cerveau, D., Ghys, E., Sibony, N., Yoccoz, J.-C.: Dynamique et Géométrie Complexes. Panoramas et Synthèses, vol. 8. Société Mathématique de France, Paris (1999) ·Zbl 1010.00008
[30]Chambert-Loir, A., Thuillier, A.: Formule de Mahler et équidistribution logarithmique. Ann. Inst. Fourier 59(3), 977–1014 (2009) ·Zbl 1192.14020
[31]Chen, X.X.: The space of Kähler metrics. J. Diff. Geom. 56(2), 189–234 (2000) ·Zbl 1041.58003
[32]De Marco, L., Rumely, R.: Transfinite diameter and the resultant. J. Reine Angew. Math. 611, 145–161 (2007) ·Zbl 1131.37054
[33]Deift, P.A.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics, vol. 3. American Mathematical Society, Providence (1999). New York University, Courant Institute of Mathematical Sciences, New York ·Zbl 0997.47033
[34]Demailly, J.-P.: Regularization of closed positive currents and Intersection Theory. J. Algebraic Geom. 1, 361–409 (1992) ·Zbl 0777.32016
[35]Demailly, J.-P.: Complex Analytic and Algebraic Geometry. Book available at www.fourier.ujf-grenoble.fr/\(\sim\)demailly/books.html
[36]Demailly, J.-P.: Potential Theory in Several Complex Variables. Manuscript available at www.fourier.ujf-grenoble.fr/\(\sim\)demailly/
[37]Donaldson, S.K.: Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc. (3) 50(1), 1–26 (1985) ·doi:10.1112/plms/s3-50.1.1
[38]Donaldson, S.K.: Scalar curvature and projective embeddings. II. Q. J. Math. 56(3), 345–356 (2005) ·Zbl 1159.32012 ·doi:10.1093/qmath/hah044
[39]Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser, Boston (1994). x+523 ·Zbl 0827.14036
[40]Guedj, V., Zeriahi, A.: Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15, 607–639 (2005) ·Zbl 1087.32020
[41]Ji, S., Shiffman, B.: Properties of compact complex manifolds carrying closed positive currents. J. Geom. Anal. 3(1), 37–61 (1993) ·Zbl 0784.32009
[42]Johansson, K.: Random matrices and determinantal processes. Preprint (2005). arXiv:math-ph/0510038v1 ·Zbl 1411.60144
[43]Kinderlehrer, D.: Stampacchia: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980) ·Zbl 0457.35001
[44]Klimek, M.: Pluripotential Theory. London Mathematical Society Monographs. New Series, vol. 6. Oxford Science Publications/The Clarendon Press/Oxford University Press, New York (1991) ·Zbl 0742.31001
[45]Lempio, F., Maurer, H.: Differential stability in infinite-dimensional nonlinear programming. Appl. Math. Optim. 6, 139–152 (1980) ·Zbl 0426.90072 ·doi:10.1007/BF01442889
[46]Mabuchi, T.: K-energy maps integrating Futaki invariants. Tohoku Math. J. (2) 38(4), 575–593 (1986) ·Zbl 0619.53040 ·doi:10.2748/tmj/1178228410
[47]Nguyen, T.V., Zeriahi, A.: Familles de polynômes presque partout bornés. Bull. Sci. Math. (2) 107(1), 81–91 (1983) ·Zbl 0523.32011
[48]Richberg, R.: Stetige streng pseudokonvexe Funktionen. Math. Ann. 175, 257–286 (1968) ·Zbl 0153.15401 ·doi:10.1007/BF02063212
[49]Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics (1970) ·Zbl 0193.18401
[50]Rumely, R.: A Robin formula for the Fekete-Leja transfinite diameter. Math. Ann. 337(4), 729–738 (2007) ·Zbl 1127.31003 ·doi:10.1007/s00208-006-0052-4
[51]Rumely, R., Lau, C.F., Varley, R.: Existence of the sectional capacity. Mem. Am. Math. Soc. 145(690) (2000) ·Zbl 0987.14018
[52]Saff, E.B., Totik, V.: Logarithmic Potentials with Exterior Fields. Springer, Berlin (1997). (With an appendix by Bloom, T.) ·Zbl 0881.31001
[53]Schneider, R.: Convex Bodies, the Brunn-Minkowski Theory. Encyclopaedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1993) ·Zbl 0798.52001
[54]Siciak, J.: Families of polynomials and determining measures. Ann. Fac. Sci. Toulouse Math. (5) 9(2), 193–211 (1988) ·Zbl 0634.31005
[55]Soulé, C.: Lectures on Arakelov Geometry. With the Collaboration of D. Abramovich, J.-F. Burnol and J. Kramer. Cambridge Studies in Advanced Mathematics, vol. 33 (1992)
[56]Szpiro, L., Ullmo, E., Zhang, S.: Equirépartition des petits points. Invent. Math. 127(2), 337–347 (1997) ·Zbl 0991.11035 ·doi:10.1007/s002220050123
[57]Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32(1), 99–130 (1990) ·Zbl 0706.53036
[58]Tian, G.: Canonical Metrics in Kähler Geometry. Birkhäuser, Basel (2000) ·Zbl 0978.53002
[59]Yuan, X.: Big line bundles over arithmetic varieties. Invent. Math. 173(3), 603–649 (2008) ·Zbl 1146.14016 ·doi:10.1007/s00222-008-0127-9
[60]Zaharjuta, V.: Transfinite diameter, Chebyshev constants, and capacity for compacta in \(\mathbb{C}\) n . Math. USSR Sb. 25, 350–364 (1975) ·Zbl 0333.32004 ·doi:10.1070/SM1975v025n03ABEH002212
[61]Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Not. 6, 317–331 (1998) ·Zbl 0922.58082 ·doi:10.1155/S107379289800021X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp