[1] | Aleksandrov, A.D.: On the theory of mixed volumes of convex bodies III: Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. Mat. Sb. 3(1), 27–44 (1938) (Russian). [English translation available in Selected works Part I: Selected scientific papers. Gordon and Breach] |
[2] | Aubin, T.: Réduction du cas positif de l’équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d’une inégalité. J. Funct. Anal. 57(2), 143–153 (1984) ·Zbl 0538.53063 ·doi:10.1016/0022-1236(84)90093-4 |
[3] | Bassanelli, G., Bertoloot, F.: Bifurcation currents in holomorphic dynamics on \(\mathbb{P}\) n . J. Reine Angew. Math. 608, 201–235 (2007) ·Zbl 1136.37025 ·doi:10.1515/CRELLE.2007.058 |
[4] | Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149(1–2), 1–40 (1982) ·Zbl 0547.32012 ·doi:10.1007/BF02392348 |
[5] | Bedford, E., Taylor, B.A.: Fine topology, Šilov boundary, and (dd c ) n . J. Funct. Anal. 72(2), 225–251 (1987) ·Zbl 0677.31005 ·doi:10.1016/0022-1236(87)90087-5 |
[6] | Berman, R.: Bergman kernels and equilibrium measures for line bundles over projective manifolds. Preprint (2007). arXiv:0710.4375 |
[7] | Berman, R.: Determinantal point processes and fermions on compex manifolds: bulk universality. Preprint (2008). arXiv:0811.3341 |
[8] | Berman, R.: Large deviations and entropy for determinantal point processes on complex manifolds. Preprint (2008). arXiv:0812.4224 |
[9] | Berman, R.: Bergman kernels for weighted polynomials and weighted equilibrium measures of \(\mathbb{C}\) n . Indiana Univ. Math. J. 58(4), 1921–1946 (2009) ·Zbl 1175.32002 ·doi:10.1512/iumj.2009.58.3644 |
[10] | Berman, R., Boucksom, S.: Equidistribution of Fekete points on complex manifolds. Preprint (2008). arXiv:0807.0035 |
[11] | Berman, R., Demailly, J.-P.: Regularity of plurisubharmonic upper envelopes in big cohomology classes. Preprint (2009). arXiv:0905.1246 ·Zbl 1258.32010 |
[12] | Berman, R., Witt Nyström, D.: Convergence of Bergman measures for high powers of a line bundle. Preprint (2008). arXiv:0805.2846 |
[13] | Berman, R., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to complex Monge-Ampère equations. Preprint (2009). arXiv:0907.4490 ·Zbl 1277.32049 |
[14] | Berman, R., Boucksom, S., Witt Nyström, D.: Fekete points and convergence towards equilibrium measures on complex manifolds. Preprint (2009). arXiv:0907.2820 ·Zbl 1241.32030 |
[15] | Berndtsson, B.: Bergman kernels related to Hermitian line bundles over compact complex manifolds. In: Explorations in Complex and Riemannian Geometry. Contemp. Math., vol. 332, pp. 1–17. Am. Math. Soc., Providence (2003) ·Zbl 1038.32003 |
[16] | Berndtsson, B.: Positivity of direct image bundles and convexity on the space of Kähler metrics. J. Diff. Geom. 81(3), 457–482 (2009) ·Zbl 1187.53076 |
[17] | Bismut, J.-M., Vasserot, E.: The asymptotics of the Ray-Singer analytic torsion associated with high powers of a positive line bundle. Commun. Math. Phys. 125(2), 355–367 (1989) ·Zbl 0687.32023 ·doi:10.1007/BF01217912 |
[18] | Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles. I–III. Direct images and Bott-Chern forms. Commun. Math. Phys. 115 (1988) ·Zbl 0651.32017 |
[19] | Bloom, T., Levenberg, N.: Strong asymptotics for Christoffel functions of planar measures. Preprint (2007). arXiv:0709.2073 ·Zbl 1158.28001 |
[20] | Bloom, T., Levenberg, N.: Transfinite diameter notions in \(\mathbb{C}\) N and integrals of Vandermonde determinants. Preprint (2007). arXiv:0712.2844 ·Zbl 1196.31003 |
[21] | Bombieri, E., Gubler, W.: Heights in Diophantine Geometry. New Mathematical Monographs, vol. 4. Cambridge University Press, Cambridge (2006) ·Zbl 1115.11034 |
[22] | Bonavero, L.: Inégalités de Morse holomorphes singulières. J. Geom. Anal. 8(3), 409–425 (1998) ·Zbl 0966.32011 |
[23] | Bouche, T.: Convergence de la métrique de Fubini-Study d’un fibré linéaire positif. Ann. Inst. Fourier 40(1), 117–130 (1990) ·Zbl 0685.32015 |
[24] | Boucksom, S.: On the volume of a line bundle. Int. J. Math. 13(10), 1043–1063 (2002) ·Zbl 1101.14008 ·doi:10.1142/S0129167X02001575 |
[25] | Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: Monge-Ampère equations in big cohomology classes. Preprint (2008). arXiv:0812.3674 . To appear in Acta Math. ·Zbl 1213.32025 |
[26] | Boucksom, S., Favre, C., Jonsson, M.: Valuations and plurisubharmonic singularities. Publ. Res. Inst. Math. Sci. 44(2), 449–494 (2008) ·Zbl 1146.32017 ·doi:10.2977/prims/1210167334 |
[27] | Boucksom, S., Favre, C., Jonsson, M.: Differentiability of volumes of divisors and a problem of Teissier. J. Algebraic Geom. 18, 279–308 (2009) ·Zbl 1162.14003 |
[28] | Catlin, D.: The Bergman kernel and a theorem of Tian. In: Analysis and Geometry in Several Complex Variables, Katata, 1997. Trends Math., pp. 1–23. Birkhäuser, Boston (1999) |
[29] | Cerveau, D., Ghys, E., Sibony, N., Yoccoz, J.-C.: Dynamique et Géométrie Complexes. Panoramas et Synthèses, vol. 8. Société Mathématique de France, Paris (1999) ·Zbl 1010.00008 |
[30] | Chambert-Loir, A., Thuillier, A.: Formule de Mahler et équidistribution logarithmique. Ann. Inst. Fourier 59(3), 977–1014 (2009) ·Zbl 1192.14020 |
[31] | Chen, X.X.: The space of Kähler metrics. J. Diff. Geom. 56(2), 189–234 (2000) ·Zbl 1041.58003 |
[32] | De Marco, L., Rumely, R.: Transfinite diameter and the resultant. J. Reine Angew. Math. 611, 145–161 (2007) ·Zbl 1131.37054 |
[33] | Deift, P.A.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics, vol. 3. American Mathematical Society, Providence (1999). New York University, Courant Institute of Mathematical Sciences, New York ·Zbl 0997.47033 |
[34] | Demailly, J.-P.: Regularization of closed positive currents and Intersection Theory. J. Algebraic Geom. 1, 361–409 (1992) ·Zbl 0777.32016 |
[35] | Demailly, J.-P.: Complex Analytic and Algebraic Geometry. Book available at www.fourier.ujf-grenoble.fr/\(\sim\)demailly/books.html |
[36] | Demailly, J.-P.: Potential Theory in Several Complex Variables. Manuscript available at www.fourier.ujf-grenoble.fr/\(\sim\)demailly/ |
[37] | Donaldson, S.K.: Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc. (3) 50(1), 1–26 (1985) ·doi:10.1112/plms/s3-50.1.1 |
[38] | Donaldson, S.K.: Scalar curvature and projective embeddings. II. Q. J. Math. 56(3), 345–356 (2005) ·Zbl 1159.32012 ·doi:10.1093/qmath/hah044 |
[39] | Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser, Boston (1994). x+523 ·Zbl 0827.14036 |
[40] | Guedj, V., Zeriahi, A.: Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15, 607–639 (2005) ·Zbl 1087.32020 |
[41] | Ji, S., Shiffman, B.: Properties of compact complex manifolds carrying closed positive currents. J. Geom. Anal. 3(1), 37–61 (1993) ·Zbl 0784.32009 |
[42] | Johansson, K.: Random matrices and determinantal processes. Preprint (2005). arXiv:math-ph/0510038v1 ·Zbl 1411.60144 |
[43] | Kinderlehrer, D.: Stampacchia: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980) ·Zbl 0457.35001 |
[44] | Klimek, M.: Pluripotential Theory. London Mathematical Society Monographs. New Series, vol. 6. Oxford Science Publications/The Clarendon Press/Oxford University Press, New York (1991) ·Zbl 0742.31001 |
[45] | Lempio, F., Maurer, H.: Differential stability in infinite-dimensional nonlinear programming. Appl. Math. Optim. 6, 139–152 (1980) ·Zbl 0426.90072 ·doi:10.1007/BF01442889 |
[46] | Mabuchi, T.: K-energy maps integrating Futaki invariants. Tohoku Math. J. (2) 38(4), 575–593 (1986) ·Zbl 0619.53040 ·doi:10.2748/tmj/1178228410 |
[47] | Nguyen, T.V., Zeriahi, A.: Familles de polynômes presque partout bornés. Bull. Sci. Math. (2) 107(1), 81–91 (1983) ·Zbl 0523.32011 |
[48] | Richberg, R.: Stetige streng pseudokonvexe Funktionen. Math. Ann. 175, 257–286 (1968) ·Zbl 0153.15401 ·doi:10.1007/BF02063212 |
[49] | Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics (1970) ·Zbl 0193.18401 |
[50] | Rumely, R.: A Robin formula for the Fekete-Leja transfinite diameter. Math. Ann. 337(4), 729–738 (2007) ·Zbl 1127.31003 ·doi:10.1007/s00208-006-0052-4 |
[51] | Rumely, R., Lau, C.F., Varley, R.: Existence of the sectional capacity. Mem. Am. Math. Soc. 145(690) (2000) ·Zbl 0987.14018 |
[52] | Saff, E.B., Totik, V.: Logarithmic Potentials with Exterior Fields. Springer, Berlin (1997). (With an appendix by Bloom, T.) ·Zbl 0881.31001 |
[53] | Schneider, R.: Convex Bodies, the Brunn-Minkowski Theory. Encyclopaedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1993) ·Zbl 0798.52001 |
[54] | Siciak, J.: Families of polynomials and determining measures. Ann. Fac. Sci. Toulouse Math. (5) 9(2), 193–211 (1988) ·Zbl 0634.31005 |
[55] | Soulé, C.: Lectures on Arakelov Geometry. With the Collaboration of D. Abramovich, J.-F. Burnol and J. Kramer. Cambridge Studies in Advanced Mathematics, vol. 33 (1992) |
[56] | Szpiro, L., Ullmo, E., Zhang, S.: Equirépartition des petits points. Invent. Math. 127(2), 337–347 (1997) ·Zbl 0991.11035 ·doi:10.1007/s002220050123 |
[57] | Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32(1), 99–130 (1990) ·Zbl 0706.53036 |
[58] | Tian, G.: Canonical Metrics in Kähler Geometry. Birkhäuser, Basel (2000) ·Zbl 0978.53002 |
[59] | Yuan, X.: Big line bundles over arithmetic varieties. Invent. Math. 173(3), 603–649 (2008) ·Zbl 1146.14016 ·doi:10.1007/s00222-008-0127-9 |
[60] | Zaharjuta, V.: Transfinite diameter, Chebyshev constants, and capacity for compacta in \(\mathbb{C}\) n . Math. USSR Sb. 25, 350–364 (1975) ·Zbl 0333.32004 ·doi:10.1070/SM1975v025n03ABEH002212 |
[61] | Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Not. 6, 317–331 (1998) ·Zbl 0922.58082 ·doi:10.1155/S107379289800021X |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.