Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Bounded traveling waves of the Burgers-Huxley equation.(English)Zbl 1207.35052

Summary: In order to investigate bounded traveling waves of the Burgers-Huxley equation, bifurcations of codimension 1 and 2 are discussed for its traveling wave system. By reduction to center manifolds and normal forms we give conditions for the appearance of homoclinic solutions, heteroclinic solutions and periodic solutions, which correspondingly give conditions of existence for solitary waves, kink waves and periodic waves, three basic types of bounded traveling waves. Furthermore, their evolutions are discussed to investigate the existence of other types of bounded traveling waves, such as the oscillatory traveling waves corresponding to connections between an equilibrium and a periodic orbit and the oscillatory kink waves corresponding to connections of saddle-focus.

MSC:

35B32 Bifurcations in context of PDEs
35Q51 Soliton equations
35C07 Traveling wave solutions
37K50 Bifurcation problems for infinite-dimensional Hamiltonian and Lagrangian systems

Cite

References:

[1]Burgers, J. M., A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1, 171-199 (1948)
[2]Satsuma, J., Topics in Soliton Theory and Exactly Solvable Nonlinear Equations (1987), World Scientific: World Scientific Singapore ·Zbl 0721.00016
[3]Debnath, L., Nonlinear Partial Differential Equations (1997), Birkhauser: Birkhauser Boston ·Zbl 0892.35001
[4]Fitzhugh, R., Mathematical Models of Excitation and Propagation in Nerve, Biological Engineering (1969), McGraw-Hill: McGraw-Hill New York
[5]Lu, B.-Q., Exact traveling wave solution of one class of nonlinear diffusion equation, Phys. Lett. A, 175, 113-115 (1993)
[6]Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge University Press ·Zbl 0762.35001
[7]Eilenberger, G., Solitons, Mathematical Method for Physicists (1981), Springer: Springer Berlin ·Zbl 0455.35001
[8]Gu, C.-H., Soliton Theory and its Application (1995), Springer: Springer Berlin ·Zbl 0834.35003
[9]Guo, B.-L.; Pang, X.-F., Soliton (1987), Science Press: Science Press Beijing
[10]Li, Y.-S., Soliton and Integrable System (1999), Shanghai Scientific and Technological Education Publishing House: Shanghai Scientific and Technological Education Publishing House Shanghai
[11]Wang, X.-Y.; Zhu, Z.-S.; Lu, Y.-K., Solitary wave solutions of the generalised Burgers-Huxley equation, J. Phys. A, 23, 271-274 (1990) ·Zbl 0708.35079
[12]Yefimova, O. Yu.; Kudryashov, N. A., Exact solutions of the Burgers-Huxley equation, J. Appl. Math. Mech., 68, 413-420 (2004) ·Zbl 1092.35084
[13]Estévez, P. G., Non-classical symmetries and the singular manifold method: the Burgers and the Burgers-Huxley equations, J. Phys. A, 27, 2113-2127 (1994) ·Zbl 0838.35114
[14]Estévez, P. G.; Gordoa, P. R., Nonclassical symmetries and the singular manifold method: theory and six examples, Stud. Appl. Math., 95, 73-113 (1995) ·Zbl 0840.35003
[15]Kudryashov, N. A., Analytical Theory of Non-linear Differential Equations (2002), Mosk Inzk-Firz Inst.: Mosk Inzk-Firz Inst. Moscow
[16]Molabahrami, A.; Khani, F., The homotopy analysis method to solve the Burgers-Huxley equation, Nonlinear Anal. RWA, 10, 589-600 (2009) ·Zbl 1167.35483
[17]Darvishi, M. T., Spectral collocation method and Darvishis preconditionings to solve the generalized Burgers-Huxley equation, Commun. Nonlinear Sci. Numer. Simul., 13, 2091-2103 (2008) ·Zbl 1221.65261
[18]Katzengruber, B.; Krupa, M.; Szmolyan, P., Bifurcation of traveling waves in extrinsic semiconductors, Physica D, 144, 1-19 (2000) ·Zbl 0960.34031
[19]Li, J.-B.; Dai, H.-H., On the Study of Singular Nonlinear Travelling Wave Equation: Dynamical System Approach (2007), Science Press: Science Press Beijing
[20]Peterhof, D.; Sandstede, B.; Scheel, A., Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders, J. Differential Equations, 140, 266-308 (1997) ·Zbl 0908.35048
[21]Sánchez-Garduño, F.; Maini, P. K., Traveling wave phenomena in non-linear diffusion degenerate Nagumo equations, J. Math. Biol., 35, 713-728 (1997) ·Zbl 0887.35073
[22]Constantin, A.; Strauss, W., Exact periodic traveling water waves with vorticity, C. R. Acad. Sci. Paris, Ser. I, 335, 797-800 (2002) ·Zbl 1020.35012
[23]Huang, J., Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol., 46, 132-152 (2003) ·Zbl 1018.92026
[24]He, B., Bifurcations of travelling wave solutions for a variant of Camassa-Holm equation, Nonlinear Anal. RWA, 9, 222-232 (2008) ·Zbl 1185.35217
[25]Li, J.-B.; Liu, Z.-R., Smooth and non-smooth traveling waves in a nonlinearly dispersive equation, Appl. Math. Model., 25, 41-56 (2000) ·Zbl 0985.37072
[26]Liu, Z.-R.; Yang, C.-X., The application of bifurcation method to a higher-order KdV equation, J. Math. Anal. Appl., 275, 1-12 (2002) ·Zbl 1012.35076
[27]Tang, Y.-N., Bifurcations of traveling wave solutions for Zhiber-Shaba equation, Nonlinear Anal. TMA, 67, 648-656 (2007) ·Zbl 1222.35179
[28]Lloyd, N. G., Limit cycles of polynomial systems—some recent developments, (Bedford, T.; Swift, J., New Directions in Dynamical Systems (1988), Cambridge Univeristy Press: Cambridge Univeristy Press Cambridge) ·Zbl 0646.34040
[29]Zhang, Z.-F., Qualitative Theory of Differential Equations (1992), Amer. Math. Soc.: Amer. Math. Soc. Providence ·Zbl 0779.34001
[30]Carr, J., Applications of Centre Manifold Theory (1981), Springer: Springer New York ·Zbl 0464.58001
[31]Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields (1983), Springer: Springer New York ·Zbl 0515.34001
[32]Chow, S.-N.; Hale, J. K., Method of Bifurcation Theory (1982), Springer: Springer New York ·Zbl 0487.47039
[33]Li, C.-Z.; Zhang, Z.-F., A criterion for determining the monotonicity of the ratio of two Abelian integrals, J. Differential Equations, 124, 407-424 (1990) ·Zbl 0849.34022
[34]Chow, S.-N.; Li, C.-Z.; Wang, D., Normal Forms and Bifurcation of Planar Vector Fields (1994), Cambridge University Press: Cambridge University Press New York ·Zbl 0804.34041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp