[1] | Burgers, J. M., A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1, 171-199 (1948) |
[2] | Satsuma, J., Topics in Soliton Theory and Exactly Solvable Nonlinear Equations (1987), World Scientific: World Scientific Singapore ·Zbl 0721.00016 |
[3] | Debnath, L., Nonlinear Partial Differential Equations (1997), Birkhauser: Birkhauser Boston ·Zbl 0892.35001 |
[4] | Fitzhugh, R., Mathematical Models of Excitation and Propagation in Nerve, Biological Engineering (1969), McGraw-Hill: McGraw-Hill New York |
[5] | Lu, B.-Q., Exact traveling wave solution of one class of nonlinear diffusion equation, Phys. Lett. A, 175, 113-115 (1993) |
[6] | Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge University Press ·Zbl 0762.35001 |
[7] | Eilenberger, G., Solitons, Mathematical Method for Physicists (1981), Springer: Springer Berlin ·Zbl 0455.35001 |
[8] | Gu, C.-H., Soliton Theory and its Application (1995), Springer: Springer Berlin ·Zbl 0834.35003 |
[9] | Guo, B.-L.; Pang, X.-F., Soliton (1987), Science Press: Science Press Beijing |
[10] | Li, Y.-S., Soliton and Integrable System (1999), Shanghai Scientific and Technological Education Publishing House: Shanghai Scientific and Technological Education Publishing House Shanghai |
[11] | Wang, X.-Y.; Zhu, Z.-S.; Lu, Y.-K., Solitary wave solutions of the generalised Burgers-Huxley equation, J. Phys. A, 23, 271-274 (1990) ·Zbl 0708.35079 |
[12] | Yefimova, O. Yu.; Kudryashov, N. A., Exact solutions of the Burgers-Huxley equation, J. Appl. Math. Mech., 68, 413-420 (2004) ·Zbl 1092.35084 |
[13] | Estévez, P. G., Non-classical symmetries and the singular manifold method: the Burgers and the Burgers-Huxley equations, J. Phys. A, 27, 2113-2127 (1994) ·Zbl 0838.35114 |
[14] | Estévez, P. G.; Gordoa, P. R., Nonclassical symmetries and the singular manifold method: theory and six examples, Stud. Appl. Math., 95, 73-113 (1995) ·Zbl 0840.35003 |
[15] | Kudryashov, N. A., Analytical Theory of Non-linear Differential Equations (2002), Mosk Inzk-Firz Inst.: Mosk Inzk-Firz Inst. Moscow |
[16] | Molabahrami, A.; Khani, F., The homotopy analysis method to solve the Burgers-Huxley equation, Nonlinear Anal. RWA, 10, 589-600 (2009) ·Zbl 1167.35483 |
[17] | Darvishi, M. T., Spectral collocation method and Darvishis preconditionings to solve the generalized Burgers-Huxley equation, Commun. Nonlinear Sci. Numer. Simul., 13, 2091-2103 (2008) ·Zbl 1221.65261 |
[18] | Katzengruber, B.; Krupa, M.; Szmolyan, P., Bifurcation of traveling waves in extrinsic semiconductors, Physica D, 144, 1-19 (2000) ·Zbl 0960.34031 |
[19] | Li, J.-B.; Dai, H.-H., On the Study of Singular Nonlinear Travelling Wave Equation: Dynamical System Approach (2007), Science Press: Science Press Beijing |
[20] | Peterhof, D.; Sandstede, B.; Scheel, A., Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders, J. Differential Equations, 140, 266-308 (1997) ·Zbl 0908.35048 |
[21] | Sánchez-Garduño, F.; Maini, P. K., Traveling wave phenomena in non-linear diffusion degenerate Nagumo equations, J. Math. Biol., 35, 713-728 (1997) ·Zbl 0887.35073 |
[22] | Constantin, A.; Strauss, W., Exact periodic traveling water waves with vorticity, C. R. Acad. Sci. Paris, Ser. I, 335, 797-800 (2002) ·Zbl 1020.35012 |
[23] | Huang, J., Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol., 46, 132-152 (2003) ·Zbl 1018.92026 |
[24] | He, B., Bifurcations of travelling wave solutions for a variant of Camassa-Holm equation, Nonlinear Anal. RWA, 9, 222-232 (2008) ·Zbl 1185.35217 |
[25] | Li, J.-B.; Liu, Z.-R., Smooth and non-smooth traveling waves in a nonlinearly dispersive equation, Appl. Math. Model., 25, 41-56 (2000) ·Zbl 0985.37072 |
[26] | Liu, Z.-R.; Yang, C.-X., The application of bifurcation method to a higher-order KdV equation, J. Math. Anal. Appl., 275, 1-12 (2002) ·Zbl 1012.35076 |
[27] | Tang, Y.-N., Bifurcations of traveling wave solutions for Zhiber-Shaba equation, Nonlinear Anal. TMA, 67, 648-656 (2007) ·Zbl 1222.35179 |
[28] | Lloyd, N. G., Limit cycles of polynomial systems—some recent developments, (Bedford, T.; Swift, J., New Directions in Dynamical Systems (1988), Cambridge Univeristy Press: Cambridge Univeristy Press Cambridge) ·Zbl 0646.34040 |
[29] | Zhang, Z.-F., Qualitative Theory of Differential Equations (1992), Amer. Math. Soc.: Amer. Math. Soc. Providence ·Zbl 0779.34001 |
[30] | Carr, J., Applications of Centre Manifold Theory (1981), Springer: Springer New York ·Zbl 0464.58001 |
[31] | Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields (1983), Springer: Springer New York ·Zbl 0515.34001 |
[32] | Chow, S.-N.; Hale, J. K., Method of Bifurcation Theory (1982), Springer: Springer New York ·Zbl 0487.47039 |
[33] | Li, C.-Z.; Zhang, Z.-F., A criterion for determining the monotonicity of the ratio of two Abelian integrals, J. Differential Equations, 124, 407-424 (1990) ·Zbl 0849.34022 |
[34] | Chow, S.-N.; Li, C.-Z.; Wang, D., Normal Forms and Bifurcation of Planar Vector Fields (1994), Cambridge University Press: Cambridge University Press New York ·Zbl 0804.34041 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.