[1] | R. Adamczak, A. E. Litvak, A. Pajor, and N. Tomczak-Jaegermann, Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling, preprint; available at http://arxiv.org/abs/0904.4723. ·Zbl 1222.52009 |
[2] | Guillaume Aubrun, Sampling convex bodies: a random matrix approach, Proc. Amer. Math. Soc. 135 (2007), no. 5, 1293 – 1303. ·Zbl 1203.52003 |
[3] | G. Aubrun, Private communication. |
[4] | Z. D. Bai and Y. Q. Yin, Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix, Ann. Probab. 21 (1993), no. 3, 1275 – 1294. ·Zbl 0779.60026 |
[5] | C. Borell, Convex set functions in \?-space, Period. Math. Hungar. 6 (1975), no. 2, 111 – 136. ·Zbl 0274.28009 ·doi:10.1007/BF02018814 |
[6] | Christer Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), no. 2, 207 – 216. ·Zbl 0292.60004 ·doi:10.1007/BF01425510 |
[7] | Jean Bourgain, Random points in isotropic convex sets, Convex geometric analysis (Berkeley, CA, 1996) Math. Sci. Res. Inst. Publ., vol. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 53 – 58. ·Zbl 0941.52003 |
[8] | Kenneth R. Davidson and Stanislaw J. Szarek, Local operator theory, random matrices and Banach spaces, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 317 – 366. , https://doi.org/10.1016/S1874-5849(01)80010-3 K. R. Davidson and S. J. Szarek, Addenda and corrigenda to: ”Local operator theory, random matrices and Banach spaces” [in Handbook of the geometry of Banach spaces, Vol. I, 317 – 366, North-Holland, Amsterdam, 2001; MR1863696 (2004f:47002a)], Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1819 – 1820. ·Zbl 1067.46008 |
[9] | A. Giannopoulos, M. Hartzoulaki, and A. Tsolomitis, Random points in isotropic unconditional convex bodies, J. London Math. Soc. (2) 72 (2005), no. 3, 779 – 798. ·Zbl 1085.52003 ·doi:10.1112/S0024610705006897 |
[10] | A. A. Giannopoulos and V. D. Milman, Concentration property on probability spaces, Adv. Math. 156 (2000), no. 1, 77 – 106. ·Zbl 1068.28002 ·doi:10.1006/aima.2000.1949 |
[11] | Olivier Guédon and Mark Rudelson, \?_{\?}-moments of random vectors via majorizing measures, Adv. Math. 208 (2007), no. 2, 798 – 823. ·Zbl 1114.46008 ·doi:10.1016/j.aim.2006.03.013 |
[12] | Ravi Kannan, László Lovász, and Miklós Simonovits, Random walks and an \?*(\?\(^{5}\)) volume algorithm for convex bodies, Random Structures Algorithms 11 (1997), no. 1, 1 – 50. , https://doi.org/10.1002/(SICI)1098-2418(199708)11:13.0.CO;2-X ·Zbl 0895.60075 |
[13] | T. Klein and E. Rio, Concentration around the mean for maxima of empirical processes, Ann. Probab. 33 (2005), no. 3, 1060 – 1077. ·Zbl 1066.60023 ·doi:10.1214/009117905000000044 |
[14] | Michel Ledoux, On Talagrand’s deviation inequalities for product measures, ESAIM Probab. Statist. 1 (1995/97), 63 – 87. ·Zbl 0869.60013 ·doi:10.1051/ps:1997103 |
[15] | Michel Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs, vol. 89, American Mathematical Society, Providence, RI, 2001. ·Zbl 0995.60002 |
[16] | Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. ·Zbl 0748.60004 |
[17] | Shahar Mendelson, On weakly bounded empirical processes, Math. Ann. 340 (2008), no. 2, 293 – 314. ·Zbl 1151.60006 ·doi:10.1007/s00208-007-0152-9 |
[18] | Shahar Mendelson and Alain Pajor, On singular values of matrices with independent rows, Bernoulli 12 (2006), no. 5, 761 – 773. ·Zbl 1138.60328 ·doi:10.3150/bj/1161614945 |
[19] | Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann, Reconstruction and subgaussian operators in asymptotic geometric analysis, Geom. Funct. Anal. 17 (2007), no. 4, 1248 – 1282. ·Zbl 1163.46008 ·doi:10.1007/s00039-007-0618-7 |
[20] | V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed \?-dimensional space, Geometric aspects of functional analysis (1987 – 88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 64 – 104. ·Zbl 0679.46012 ·doi:10.1007/BFb0090049 |
[21] | A. Pajor and L. Pastur, On the Limiting Empirical Measure of the sum of rank one matrices with log-concave distribution, Studia Math. to appear. ·Zbl 1178.15023 |
[22] | G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006), no. 5, 1021 – 1049. ·Zbl 1114.52004 ·doi:10.1007/s00039-006-0584-5 |
[23] | M. Rudelson, Random vectors in the isotropic position, J. Funct. Anal. 164 (1999), no. 1, 60 – 72. ·Zbl 0929.46021 ·doi:10.1006/jfan.1998.3384 |
[24] | Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. ·Zbl 0798.52001 |
[25] | Michel Talagrand, New concentration inequalities in product spaces, Invent. Math. 126 (1996), no. 3, 505 – 563. ·Zbl 0893.60001 ·doi:10.1007/s002220050108 |
[26] | Aad W. van der Vaart and Jon A. Wellner, Weak convergence and empirical processes, Springer Series in Statistics, Springer-Verlag, New York, 1996. With applications to statistics. ·Zbl 0862.60002 |