Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles.(English)Zbl 1206.60006

Let \(X\) be a uniformly distributed point in an isotropic convex body in \(\mathbb R^n\), or, more generally, a centered random vector in \(\mathbb R^n\) with a log-concave distribution and identity covariance matrix. Following the lead ofR. Kannan,L. Lovász andM. Simonovits [Random Struct. Algorithms 11, No. 1, 1–50 (1997;Zbl 0895.60075)], several authors have provided quantitative estimates of the distance between the sample covariance matrix, based on \(N\) i.i.d. copies of \(X\), and the identity. In the paper under review, the authors prove that for any \(\varepsilon > 0\), there exists \(C(\varepsilon) > 0\) such that if \(N \geq C(\varepsilon)\cdot n\), then with probability at least \(1-\exp(-c\sqrt{n})\) (\(c > 0\) an absolute constant) this distance is bounded by \(\epsilon\).

MSC:

60B20 Random matrices (probabilistic aspects)
46B09 Probabilistic methods in Banach space theory
52A21 Convexity and finite-dimensional Banach spaces (including special norms, zonoids, etc.) (aspects of convex geometry)
60E15 Inequalities; stochastic orderings

Cite

References:

[1]R. Adamczak, A. E. Litvak, A. Pajor, and N. Tomczak-Jaegermann, Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling, preprint; available at http://arxiv.org/abs/0904.4723. ·Zbl 1222.52009
[2]Guillaume Aubrun, Sampling convex bodies: a random matrix approach, Proc. Amer. Math. Soc. 135 (2007), no. 5, 1293 – 1303. ·Zbl 1203.52003
[3]G. Aubrun, Private communication.
[4]Z. D. Bai and Y. Q. Yin, Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix, Ann. Probab. 21 (1993), no. 3, 1275 – 1294. ·Zbl 0779.60026
[5]C. Borell, Convex set functions in \?-space, Period. Math. Hungar. 6 (1975), no. 2, 111 – 136. ·Zbl 0274.28009 ·doi:10.1007/BF02018814
[6]Christer Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), no. 2, 207 – 216. ·Zbl 0292.60004 ·doi:10.1007/BF01425510
[7]Jean Bourgain, Random points in isotropic convex sets, Convex geometric analysis (Berkeley, CA, 1996) Math. Sci. Res. Inst. Publ., vol. 34, Cambridge Univ. Press, Cambridge, 1999, pp. 53 – 58. ·Zbl 0941.52003
[8]Kenneth R. Davidson and Stanislaw J. Szarek, Local operator theory, random matrices and Banach spaces, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 317 – 366. , https://doi.org/10.1016/S1874-5849(01)80010-3 K. R. Davidson and S. J. Szarek, Addenda and corrigenda to: ”Local operator theory, random matrices and Banach spaces” [in Handbook of the geometry of Banach spaces, Vol. I, 317 – 366, North-Holland, Amsterdam, 2001; MR1863696 (2004f:47002a)], Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1819 – 1820. ·Zbl 1067.46008
[9]A. Giannopoulos, M. Hartzoulaki, and A. Tsolomitis, Random points in isotropic unconditional convex bodies, J. London Math. Soc. (2) 72 (2005), no. 3, 779 – 798. ·Zbl 1085.52003 ·doi:10.1112/S0024610705006897
[10]A. A. Giannopoulos and V. D. Milman, Concentration property on probability spaces, Adv. Math. 156 (2000), no. 1, 77 – 106. ·Zbl 1068.28002 ·doi:10.1006/aima.2000.1949
[11]Olivier Guédon and Mark Rudelson, \?_{\?}-moments of random vectors via majorizing measures, Adv. Math. 208 (2007), no. 2, 798 – 823. ·Zbl 1114.46008 ·doi:10.1016/j.aim.2006.03.013
[12]Ravi Kannan, László Lovász, and Miklós Simonovits, Random walks and an \?*(\?\(^{5}\)) volume algorithm for convex bodies, Random Structures Algorithms 11 (1997), no. 1, 1 – 50. , https://doi.org/10.1002/(SICI)1098-2418(199708)11:13.0.CO;2-X ·Zbl 0895.60075
[13]T. Klein and E. Rio, Concentration around the mean for maxima of empirical processes, Ann. Probab. 33 (2005), no. 3, 1060 – 1077. ·Zbl 1066.60023 ·doi:10.1214/009117905000000044
[14]Michel Ledoux, On Talagrand’s deviation inequalities for product measures, ESAIM Probab. Statist. 1 (1995/97), 63 – 87. ·Zbl 0869.60013 ·doi:10.1051/ps:1997103
[15]Michel Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs, vol. 89, American Mathematical Society, Providence, RI, 2001. ·Zbl 0995.60002
[16]Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. ·Zbl 0748.60004
[17]Shahar Mendelson, On weakly bounded empirical processes, Math. Ann. 340 (2008), no. 2, 293 – 314. ·Zbl 1151.60006 ·doi:10.1007/s00208-007-0152-9
[18]Shahar Mendelson and Alain Pajor, On singular values of matrices with independent rows, Bernoulli 12 (2006), no. 5, 761 – 773. ·Zbl 1138.60328 ·doi:10.3150/bj/1161614945
[19]Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann, Reconstruction and subgaussian operators in asymptotic geometric analysis, Geom. Funct. Anal. 17 (2007), no. 4, 1248 – 1282. ·Zbl 1163.46008 ·doi:10.1007/s00039-007-0618-7
[20]V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed \?-dimensional space, Geometric aspects of functional analysis (1987 – 88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 64 – 104. ·Zbl 0679.46012 ·doi:10.1007/BFb0090049
[21]A. Pajor and L. Pastur, On the Limiting Empirical Measure of the sum of rank one matrices with log-concave distribution, Studia Math. to appear. ·Zbl 1178.15023
[22]G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006), no. 5, 1021 – 1049. ·Zbl 1114.52004 ·doi:10.1007/s00039-006-0584-5
[23]M. Rudelson, Random vectors in the isotropic position, J. Funct. Anal. 164 (1999), no. 1, 60 – 72. ·Zbl 0929.46021 ·doi:10.1006/jfan.1998.3384
[24]Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. ·Zbl 0798.52001
[25]Michel Talagrand, New concentration inequalities in product spaces, Invent. Math. 126 (1996), no. 3, 505 – 563. ·Zbl 0893.60001 ·doi:10.1007/s002220050108
[26]Aad W. van der Vaart and Jon A. Wellner, Weak convergence and empirical processes, Springer Series in Statistics, Springer-Verlag, New York, 1996. With applications to statistics. ·Zbl 0862.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp