14N10 | Enumerative problems (combinatorial problems) in algebraic geometry |
14N35 | Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects) |
[1] | R Bott, A residue formula for holomorphic vector-fields, J. Differential Geometry 1 (1967) 311 ·Zbl 0179.28801 |
[2] | J Bryan, T Graber, The crepant resolution conjecture, Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 23 ·Zbl 1198.14053 |
[3] | J Bryan, R Pandharipande, Curves in Calabi-Yau threefolds and topological quantum field theory, Duke Math. J. 126 (2005) 369 ·Zbl 1084.14053 ·doi:10.1215/S0012-7094-04-12626-0 |
[4] | J Bryan, R Pandharipande, The local Gromov-Witten theory of curves, J. Amer. Math. Soc. 21 (2008) 101 ·Zbl 1126.14062 ·doi:10.1090/S0894-0347-06-00545-5 |
[5] | S K Donaldson, R P Thomas, Gauge theory in higher dimensions, Oxford Univ. Press (1998) 31 ·Zbl 0926.58003 |
[6] | Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560 ·Zbl 0989.81114 |
[7] | A Gholampour, On the equivariant Gromov-Witten theory of \(\mathbbP^2\)-bundles over curves, Comm. Anal. Geom. 14 (2006) 633 ·Zbl 1114.14033 ·doi:10.4310/CAG.2006.v14.n4.a3 |
[8] | A Gholampour, Y Song, Evidence for the Gromov-Witten/Donaldson-Thomas correspondence, Math. Res. Lett. 13 (2006) 623 ·Zbl 1136.14044 ·doi:10.4310/MRL.2006.v13.n4.a11 |
[9] | T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487 ·Zbl 0953.14035 ·doi:10.1007/s002220050293 |
[10] | I Grojnowski, Instantons and affine algebras I: The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275 ·Zbl 0879.17011 ·doi:10.4310/MRL.1996.v3.n2.a12 |
[11] | M Haiman, Notes on Macdonald polynomials and the geometry of Hilbert schemes, NATO Sci. Ser. II Math. Phys. Chem. 74, Kluwer Acad. Publ. (2002) 1 ·Zbl 1057.14011 |
[12] | E N Ionel, T H Parker, Relative Gromov-Witten invariants, Ann. of Math. \((2)\) 157 (2003) 45 ·Zbl 1039.53101 ·doi:10.4007/annals.2003.157.45 |
[13] | Y H Kiem, J Li, Gromov-Witten invariants of varieties with holomorphic 2-forms |
[14] | M Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157 ·Zbl 0919.14001 ·doi:10.1007/s002220050307 |
[15] | M Lehn, C Sorger, Symmetric groups and the cup product on the cohomology of Hilbert schemes, Duke Math. J. 110 (2001) 345 ·Zbl 1093.14008 ·doi:10.1215/S0012-7094-01-11026-0 |
[16] | A M Li, Y Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 (2001) 151 ·Zbl 1062.53073 ·doi:10.1007/s002220100146 |
[17] | J Li, A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002) 199 ·Zbl 1063.14069 |
[18] | J Li, private communication (2004) |
[19] | J Li, B Wu, Degeneration of Donaldson-Thomas invariants, preprint (2009) |
[20] | W p Li, Z Qin, W Wang, Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces, Math. Ann. 324 (2002) 105 ·Zbl 1024.14001 ·doi:10.1007/s002080200330 |
[21] | C C Liu, K Liu, J Zhou, A proof of a conjecture of Mariño-Vafa on Hodge integrals ·Zbl 1094.14043 ·doi:10.4310/MRL.2004.v11.n2.a9 |
[22] | I G Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1995) ·Zbl 0824.05059 |
[23] | M Mariño, C Vafa, Framed knots at large \(N\) ·Zbl 1042.81071 |
[24] | D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory I, Compos. Math. 142 (2006) 1263 ·Zbl 1108.14046 ·doi:10.1112/S0010437X06002302 |
[25] | D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory II, Compos. Math. 142 (2006) 1286 ·Zbl 1108.14047 ·doi:10.1112/S0010437X06002314 |
[26] | D Maulik, R Pandharipande, A topological view of Gromov-Witten theory, Topology 45 (2006) 887 ·Zbl 1112.14065 ·doi:10.1016/j.top.2006.06.002 |
[27] | D Maulik, R Pandharipande, R Thomas, Curves on \(K3\) surfaces and modular forms ·Zbl 1207.14058 ·doi:10.1112/jtopol/jtq030 |
[28] | H Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series 18, American Mathematical Society (1999) ·Zbl 0949.14001 |
[29] | A Okounkov, R Pandharipande, Hodge integrals and invariants of the unknot, Geom. Topol. 8 (2004) 675 ·Zbl 1062.14035 ·doi:10.2140/gt.2004.8.675 |
[30] | A Okounkov, R Pandharipande, Virasoro constraints for target curves, Invent. Math. 163 (2006) 47 ·Zbl 1140.14047 ·doi:10.1007/s00222-005-0455-y |
[31] | A Okounkov, R Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010) 523 ·Zbl 1198.14054 ·doi:10.1007/s00222-009-0223-5 |
[32] | A Okounkov, N Reshetikhin, Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc. 16 (2003) 581 ·Zbl 1009.05134 ·doi:10.1090/S0894-0347-03-00425-9 |
[33] | A Okounkov, N Reshetikhin, C Vafa, Quantum Calabi-Yau and classical crystals ·Zbl 1129.81080 |
[34] | R P Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on \(K3\) fibrations, J. Differential Geom. 54 (2000) 367 ·Zbl 1034.14015 |
[35] | E Vasserot, Sur l’anneau de cohomologie du schéma de Hilbert de \(\mathbbC^2\), C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 7 ·Zbl 0991.14001 ·doi:10.1016/S0764-4442(00)01766-3 |