Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The local Donaldson-Thomas theory of curves.(English)Zbl 1205.14067

The authors carry out calculations of the local Donaldson-Thomas theory of curves, which refers to all Donaldson-Thomas invariants on the total space of a rank two bundle over a curve relative to surfaces determined by the fibers over fixed points in the curve. By comparing these results to those obtained byJ. Bryan andR. Pandharipande [J. Am. Math. Soc. 21, No. 1, 101–136 (2008;Zbl 1126.14062)] on the local Gromov-Witten theory of curves, they establish the Gromov-Witten/Donaldson-Thomas correspondence for the local theory of curves. This provides a rich class of new examples where the GW/DT correspondence is verified, and these techniques are likely to play a basic role in the general proof of the GW/DT correspondence for 3-folds. The calculations are achieved by localization and degeneration methods, and the results relate both the Gromov-Witten and Donaldson-Thomas invariants to the quantum cohomology of the Hilbert scheme of points in the plane.

MSC:

14N10 Enumerative problems (combinatorial problems) in algebraic geometry
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)

Citations:

Zbl 1126.14062

Cite

References:

[1]R Bott, A residue formula for holomorphic vector-fields, J. Differential Geometry 1 (1967) 311 ·Zbl 0179.28801
[2]J Bryan, T Graber, The crepant resolution conjecture, Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 23 ·Zbl 1198.14053
[3]J Bryan, R Pandharipande, Curves in Calabi-Yau threefolds and topological quantum field theory, Duke Math. J. 126 (2005) 369 ·Zbl 1084.14053 ·doi:10.1215/S0012-7094-04-12626-0
[4]J Bryan, R Pandharipande, The local Gromov-Witten theory of curves, J. Amer. Math. Soc. 21 (2008) 101 ·Zbl 1126.14062 ·doi:10.1090/S0894-0347-06-00545-5
[5]S K Donaldson, R P Thomas, Gauge theory in higher dimensions, Oxford Univ. Press (1998) 31 ·Zbl 0926.58003
[6]Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560 ·Zbl 0989.81114
[7]A Gholampour, On the equivariant Gromov-Witten theory of \(\mathbbP^2\)-bundles over curves, Comm. Anal. Geom. 14 (2006) 633 ·Zbl 1114.14033 ·doi:10.4310/CAG.2006.v14.n4.a3
[8]A Gholampour, Y Song, Evidence for the Gromov-Witten/Donaldson-Thomas correspondence, Math. Res. Lett. 13 (2006) 623 ·Zbl 1136.14044 ·doi:10.4310/MRL.2006.v13.n4.a11
[9]T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487 ·Zbl 0953.14035 ·doi:10.1007/s002220050293
[10]I Grojnowski, Instantons and affine algebras I: The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275 ·Zbl 0879.17011 ·doi:10.4310/MRL.1996.v3.n2.a12
[11]M Haiman, Notes on Macdonald polynomials and the geometry of Hilbert schemes, NATO Sci. Ser. II Math. Phys. Chem. 74, Kluwer Acad. Publ. (2002) 1 ·Zbl 1057.14011
[12]E N Ionel, T H Parker, Relative Gromov-Witten invariants, Ann. of Math. \((2)\) 157 (2003) 45 ·Zbl 1039.53101 ·doi:10.4007/annals.2003.157.45
[13]Y H Kiem, J Li, Gromov-Witten invariants of varieties with holomorphic 2-forms
[14]M Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157 ·Zbl 0919.14001 ·doi:10.1007/s002220050307
[15]M Lehn, C Sorger, Symmetric groups and the cup product on the cohomology of Hilbert schemes, Duke Math. J. 110 (2001) 345 ·Zbl 1093.14008 ·doi:10.1215/S0012-7094-01-11026-0
[16]A M Li, Y Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 (2001) 151 ·Zbl 1062.53073 ·doi:10.1007/s002220100146
[17]J Li, A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002) 199 ·Zbl 1063.14069
[18]J Li, private communication (2004)
[19]J Li, B Wu, Degeneration of Donaldson-Thomas invariants, preprint (2009)
[20]W p Li, Z Qin, W Wang, Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces, Math. Ann. 324 (2002) 105 ·Zbl 1024.14001 ·doi:10.1007/s002080200330
[21]C C Liu, K Liu, J Zhou, A proof of a conjecture of Mariño-Vafa on Hodge integrals ·Zbl 1094.14043 ·doi:10.4310/MRL.2004.v11.n2.a9
[22]I G Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1995) ·Zbl 0824.05059
[23]M Mariño, C Vafa, Framed knots at large \(N\) ·Zbl 1042.81071
[24]D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory I, Compos. Math. 142 (2006) 1263 ·Zbl 1108.14046 ·doi:10.1112/S0010437X06002302
[25]D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory II, Compos. Math. 142 (2006) 1286 ·Zbl 1108.14047 ·doi:10.1112/S0010437X06002314
[26]D Maulik, R Pandharipande, A topological view of Gromov-Witten theory, Topology 45 (2006) 887 ·Zbl 1112.14065 ·doi:10.1016/j.top.2006.06.002
[27]D Maulik, R Pandharipande, R Thomas, Curves on \(K3\) surfaces and modular forms ·Zbl 1207.14058 ·doi:10.1112/jtopol/jtq030
[28]H Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series 18, American Mathematical Society (1999) ·Zbl 0949.14001
[29]A Okounkov, R Pandharipande, Hodge integrals and invariants of the unknot, Geom. Topol. 8 (2004) 675 ·Zbl 1062.14035 ·doi:10.2140/gt.2004.8.675
[30]A Okounkov, R Pandharipande, Virasoro constraints for target curves, Invent. Math. 163 (2006) 47 ·Zbl 1140.14047 ·doi:10.1007/s00222-005-0455-y
[31]A Okounkov, R Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010) 523 ·Zbl 1198.14054 ·doi:10.1007/s00222-009-0223-5
[32]A Okounkov, N Reshetikhin, Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc. 16 (2003) 581 ·Zbl 1009.05134 ·doi:10.1090/S0894-0347-03-00425-9
[33]A Okounkov, N Reshetikhin, C Vafa, Quantum Calabi-Yau and classical crystals ·Zbl 1129.81080
[34]R P Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on \(K3\) fibrations, J. Differential Geom. 54 (2000) 367 ·Zbl 1034.14015
[35]E Vasserot, Sur l’anneau de cohomologie du schéma de Hilbert de \(\mathbbC^2\), C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 7 ·Zbl 0991.14001 ·doi:10.1016/S0764-4442(00)01766-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp