15B52 | Random matrices (algebraic aspects) |
60F15 | Strong limit theorems |
60B20 | Random matrices (probabilistic aspects) |
15A18 | Eigenvalues, singular values, and eigenvectors |
[1] | Bai, Z. D. (1997). Circular law. Ann. Probab. 25 494-529. ·Zbl 0871.62018 ·doi:10.1214/aop/1024404298 |
[2] | Bai, Z. D. and Silverstein, J. (2006). Spectral Analysis of Large Dimensional Random Matrices. Mathematics Monograph Series 2 . Science Press, Beijing. ·Zbl 1196.60002 |
[3] | Dozier, R. B. and Silverstein, J. W. (2007). On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices. J. Multivariate Anal. 98 678-694. ·Zbl 1115.60035 ·doi:10.1016/j.jmva.2006.09.006 |
[4] | Chatterjee, S. (2005). A simple invariance principle. Available at . |
[5] | Chafai, D. (2008). Circular law for non-central random matrices. |
[6] | Edelman, A. (1988). Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl. 9 543-560. ·Zbl 0678.15019 ·doi:10.1137/0609045 |
[7] | Girko, V. L. (1984). The circular law. Theory Probab. Appl. 29 694-706. ·Zbl 0565.60034 |
[8] | Girko, V. L. (2004). The strong circular law. Twenty years later. II. Random Oper. Stochastic Equations 12 255-312. ·Zbl 1065.60026 ·doi:10.1163/1569397042222477 |
[9] | Götze, F. and Tikhomirov, A. N. (2007). On the circular law. |
[10] | Götze, F. and Tikhomirov, A. N. (2007). The circular law for random matrices. ·Zbl 1118.15022 |
[11] | Krishnapour, M. and Vu, V. Manuscript in preparation. |
[12] | Ledoux, M. (2001). The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89 . Amer. Math. Soc., Providence, RI. ·Zbl 0995.60002 |
[13] | Mehta, M. L. (1967). Random Matrices and the Statistical Theory of Energy Levels . Academic Press, New York. ·Zbl 0925.60011 |
[14] | Pan, G. and Zhou, W. (2010). Circular law, extreme singular values and potential theory. J. Multivariate Anal. 101 645-656. ·Zbl 1203.60011 ·doi:10.1016/j.jmva.2009.08.005 |
[15] | Pastur, L. A. (1972). The spectrum of random matrices. Teoret. Mat. Fiz. 10 102-112. |
[16] | Rudelson, M. (2008). Invertibility of random matrices: Norm of the inverse. Ann. of Math. (2) 168 575-600. ·Zbl 1175.15030 ·doi:10.4007/annals.2008.168.575 |
[17] | Rudelson, M. and Vershynin, R. (2008). The least singular value of a random square matrix is O ( n - 1/2 ). C. R. Math. Acad. Sci. Paris 346 893-896. ·Zbl 1152.60042 ·doi:10.1016/j.crma.2008.07.009 |
[18] | Rudelson, M. and Vershynin, R. (2009). Smallest singular value of a random rectangular matrix. Comm. Pure Appl. Math. 62 1707-1739. ·Zbl 1183.15031 ·doi:10.1002/cpa.20294 |
[19] | Rudelson, M. and Vershynin, R. (2010). The Littlewood-Offord problem and the condition number of random matrices. Adv. Math. 218 600-633. ·Zbl 1139.15015 ·doi:10.1016/j.aim.2008.01.010 |
[20] | Speicher, R. Survey in preparation. |
[21] | Tao, T. and Vu, V. (2006). On random \pm 1 matrices: Singularity and determinant. Random Structures Algorithms 28 1-23. ·Zbl 1086.60008 ·doi:10.1002/rsa.20109 |
[22] | Tao, T. and Vu, V. (2006). Additive Combinatorics. Cambridge Studies in Advanced Mathematics 105 . Cambridge Univ. Press, Cambridge. ·Zbl 1127.11002 |
[23] | Tao, T. and Vu, V. H. (2009). Inverse Littlewood-Offord theorems and the condition number of random discrete matrices. Ann. of Math. (2) 169 595-632. ·Zbl 1250.60023 ·doi:10.4007/annals.2009.169.595 |
[24] | Tao, T. and Vu, V. (2007). The condition number of a randomly perturbed matrix. In STOC’ 07 -Proceedings of the 39 th Annual ACM Symposium on Theory of Computing 248-255. ACM, New York. ·Zbl 1232.15030 |
[25] | Tao, T. and Vu, V. (2008). Random matrices: The circular law. Commun. Contemp. Math. 10 261-307. ·Zbl 1156.15010 ·doi:10.1142/S0219199708002788 |
[26] | Tao, T. and Vu, V. (2010). Random matrices: The distribution of the smallest singular values. Geom. Funct. Anal. 20 260-297. ·Zbl 1210.60014 ·doi:10.1007/s00039-010-0057-8 |
[27] | Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2) 67 325-327. JSTOR: ·Zbl 0085.13203 ·doi:10.2307/1970008 |