Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the heat flow on metric measure spaces: existence, uniqueness and stability.(English)Zbl 1200.35178

Summary: We prove existence and uniqueness of the gradient flow of the entropy functional under the only assumption that the functional is \(\lambda \)-geodesically convex for some \(\lambda\in\mathbb R\). Also, we prove a general stability result for gradient flows of geodesically convex functionals which \(\Gamma \)-converge to some limit functional. The stability result applies directly to the case of the entropy functionals on compact spaces.

MSC:

35K90 Abstract parabolic equations
60B05 Probability measures on topological spaces
28A33 Spaces of measures, convergence of measures
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
35B35 Stability in context of PDEs

Cite

References:

[1]Ambrosio L., Gigli N., Savaré G.: Gradient flows in metric spaces and in spaces of probability measures. Birkäuser, Basel (2005) ·Zbl 1090.35002
[2]Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. Graduate studies in mathematics, vol. 33. American Mathematical Society, Providence, RI (2001). http://www.pdmi.ras.ru/staff/burago.html ·Zbl 0981.51016
[3]Dal Maso, G.: An introduction to {\(\Gamma\)}-convergence. Progress in Nonlinear Differential Equations and Their Applications, vol. 8. Birkäuser, Boston (1993) ·Zbl 0816.49001
[4]Figalli, A., Gigli, N.: A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions (submitted paper) ·Zbl 1203.35126
[5]Fukaya K.: Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87(3), 517–547 (1987) ·Zbl 0589.58034 ·doi:10.1007/BF01389241
[6]Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Of progress in mathematics, vol. 152. Birkhäuser Boston Inc., Boston, MA (1999), Based on the 1981 French original. With appendices by M. Katz, P. Pansu and S. Semmes. Translated from the French by S. M. Bates ·Zbl 0953.53002
[7]Juillet, N.: Geometric inequalities and generalized Ricci bounds in the Heisenberg group. IMRN (to appear) ·Zbl 1176.53053
[8]Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (to appear) ·Zbl 1178.53038
[9]Otto F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Part. Differ. Equat. 26, 101–174 (2001) ·Zbl 0984.35089 ·doi:10.1081/PDE-100002243
[10]Savaré G.: Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds. C. R. Math. Acad. Sci. Paris 345, 151–154 (2007) ·Zbl 1125.53064
[11]Sturm K.-T.: On the geometry of metric measure spaces. I–II. Acta Math. 196(1), 65–177 (2006) ·Zbl 1105.53035 ·doi:10.1007/s11511-006-0002-8
[12]Sturm, K.-T., Ohta, S.I.: Heat flow on Finster manifolds. CPAM (to appear)
[13]Villani C.: Optimal Transport, Old and New. Springer Verlag, Heidleberg (2008) ·Zbl 1158.53036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp