05D05 | Extremal set theory |
05C69 | Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.) |
[1] | R. Ahlswede and L. Khachatrian: The complete intersection theorem for systems of finite sets, European J. Combin. 18(2) (1997), 125–136. ·Zbl 0869.05066 ·doi:10.1006/eujc.1995.0092 |
[2] | N. Alon, I. Dinur, E. Friedgut and B. Sudakov: Graph Products, Fourier Analysis and Spectral Techniques; G.A.F.A. 14(5) (2004), 913–940. ·Zbl 1056.05104 |
[3] | N. Alon and J. Spencer: The probabilistic method, Second edition, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience [John Wiley and Sons], New York, 2000. |
[4] | J. Bourgain: On the distribution of the Fourier spectrum of boolean functions, Israel J. Math. 131 (2002), 269–276. ·Zbl 1021.43004 ·doi:10.1007/BF02785861 |
[5] | P. Delsarte: The association schemes of coding theory, in: Combinatorics (Proc. NATO Advanced Study Inst., Breukelen, 1974), Part 1: Theory of designs, finite geometry and coding theory, pp. 139–157. Math. Centre Tracts, No. 55, Math.Centrum, Amsterdam, 1974. |
[6] | I. Dinur and E. Friedgut: Intersecting families are approximately contained in juntas, in preparation. ·Zbl 1243.05235 |
[7] | I. Dinur and E. Friedgut: A proof of an intersection theorem via graph homomorphisms, Electron. J. Comb. 13(1) (2006), #N6. ·Zbl 1087.05060 |
[8] | I. Dinur, E. Friegut and O. Regev: Independent sets in graph powers are almost contained in juntas, to appear in G.A.F.A. http://dx.doi.org/10.1007/s00039-008-0651-1 ·Zbl 1147.05058 |
[9] | I. Dinur and S. Safra: On the importance of being biased (1.36 hardness of approximating Vertex-Cover), Annals of Mathematics, to appear. Proc. of 34th STOC, 2002. ·Zbl 1192.68318 |
[10] | P. Erdos, C. Ko and R. Rado: Intersection theorems for systems of finite sets, Quart. J. Math. Oxford, Ser. 2 12 (1961), 313–318. ·Zbl 0100.01902 ·doi:10.1093/qmath/12.1.313 |
[11] | P. C. Fishburn, P. Frankl, D. Freed, J. C. Lagarias and A. M. Odlyzko: Probabilities for intersecting systems and random subsets of finite sets, SIAM J. Algebraic Discrete Methods 7(1) (1986), 73–79. ·Zbl 0582.60014 ·doi:10.1137/0607009 |
[12] | P. Frankl: The Erdos-Ko-Rado theorem is true for n = ckt, in: Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, pp. 365–375, Colloq. Math. Soc. János Bolyai, 18, North-Holland, Amsterdam-New York, 1978. |
[13] | P. Frankl: On intersecting families of finite sets, J. Combin. Theory Ser. A 24(2) (1978), 146–161. ·Zbl 0384.05002 ·doi:10.1016/0097-3165(78)90003-1 |
[14] | P. Frankl and Z. Füredi: Beyond the Erdos-Ko-Rado theorem, J. Combin. Theory Ser. A 56(2) (1991), 182–194. ·Zbl 0742.05080 ·doi:10.1016/0097-3165(91)90031-B |
[15] | P. Frankl and Z. Füredi: Finite projective spaces and intersecting hypergraphs, Combinatorica 6(4) (1986), 335–354. ·Zbl 0643.05018 ·doi:10.1007/BF02579260 |
[16] | P. Frankl and N. Tokushige: Weighted multiply intersecting families, Studia Sci. Math. Hungar. 40(3) (2003), 287–291. ·Zbl 1045.05084 |
[17] | E. Friedgut: A Katona-type proof of an Erd?os-Ko-Rado-type theorem, J. Combin. Theory Ser. A 111(2) (2005), 239–244. ·Zbl 1073.05067 ·doi:10.1016/j.jcta.2004.12.004 |
[18] | E. Friedgut, A. Naor and G. Kalai: Boolean Functions whose Fourier Transform is Concentrated on the First Two Levels, Adv. in Appl. Math. 29 (2002), 427–437. ·Zbl 1039.91014 ·doi:10.1016/S0196-8858(02)00024-6 |
[19] | Z. Füredi: Erdos-Ko-Rado type theorems with upper bounds on the maximum degree, in: Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), pp. 177–207, Colloq. Math. Soc. János Bolyai, 25, North-Holland, Amsterdam-New York, 1981. |
[20] | A. J. W. Hilton and E. C. Milner: Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford, Ser. 2 18 (1967), 369–384. ·Zbl 0168.26205 ·doi:10.1093/qmath/18.1.369 |
[21] | A. J. Hoffman: On eigenvalues and colorings of graphs, in: 1970 Graph Theory and its Applications (Proc. Advanced Sem., Math. Research Center, Univ. of Wisconsin, Madison, Wis., 1969), pp. 79–91, Academic Press, New York (Reviewer: R. C. Read). |
[22] | G. Kindler and S. Safra: Noise-resistant boolean functions are juntas, submitted. |
[23] | N. Linial, Y. Mansour and N. Nisan: Constant depth circuits, Fourier transform, and learnability; J. Assoc. Comput. Mach. 40(3) (1993), 607–620. ·Zbl 0781.94006 |
[24] | L. Lovász: On the Shannon capacity of a graph, IEEE Transactions on Information Theory 25 (1979), 1–7. ·Zbl 0395.94021 ·doi:10.1109/TIT.1979.1055985 |
[25] | A. Schrijver: Association schemes and the Shannon capacity: Eberlein polynomials and the Erdos-Ko-Rado theorem; in: Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), pp. 671–688, Colloq. Math. Soc. János Bolyai, 25, North-Holland, Amsterdam-New York, 1981. |
[26] | R. M. Wilson: The exact bound in the Erdos-Ko-Rado theorem, Combinatorica 4(2–3) (1984), 247–257. ·Zbl 0556.05039 ·doi:10.1007/BF02579226 |