Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Positive solutions of nonlinear problems involving the square root of the Laplacian.(English)Zbl 1198.35286

The authors study the existence and regularity results of positive solutions for nonlinear problem containing the square root of the Laplacian \(A_{\frac{1}{2}}u=f(u)\) \((A_{\frac{1}{2}}\) stands for the square root of the operator \(-\triangle\) in a bounded domain \(\Omega\)) with zero Dirichlet boundary conditions.
Among other results they prove:
Theorem 1.1 (The existence result). Let \(n\geq 1\) be an integer and \(2^{\sharp}=\frac{2n}{n-1}\) when \(n\geq 2\). Suppose that \(\Omega\) is a smooth bounded domain in \(\mathbb R^n\) and \(f(u)=u^p\). Assume that \(1<p<2^{\sharp}-1=\frac{n+1}{n-1}\) if \(n\geq 2\), or that \(1<p<\infty\) if \(n=1\).
Then, problem admits at least one solution. This solution (as well as every weak solution) belongs to \(C^{2,\alpha}(\overline{\Omega})\) for some \(0<\alpha <1\).
Theorem 1.3 (A priori estimates of Gidas-Spruck type). Let \(n\geq 2\) and \(2^{\sharp}=\frac{2n}{n-1}\). Assume that \(\Omega \subset\mathbb R^n\) is a smooth bounded domain and \(f(u)=u^p\), \(1<p<2^{\sharp}-1=\frac{n+1}{n-1}\).
Then there exists a constant \(C(p,\Omega)\), which depends only on \(p\) and \(\Omega\), such that every weak solution of the problem satisfies \(\|u\|_{L^{\infty}(\Omega)}\leq C(p,\Omega)\).
Theorem 1.6 (Symmetry results of Gidas-Ni-Nirenberg type). Assume that \(\Omega\) is a bounded smooth domain of in \(\mathbb{R}^n\) which is convex in the \(x_1\) direction and symmetric with respect to the hyperplane \(\{x_1=0\}\). Let \(f\) be Lipschitz continuous and \(u\) be a \(C^{2,\alpha}(\overline{\Omega})\) solution of the problem.
Then \(u\) is symmetric with respect to \(x_1\), i.e., \(u(-x_1, x')=u(x_1, x')\) for all \((x_1, x')\in \Omega\). In addition, \(\frac{\partial u}{\partial x_1}<0\) for \(x_1>0\).
In particular, if \(\Omega=B_R(0)\) is a ball, then \(u\) is radially symmetric, \(u=u(|x|)=u(r)\) for \(r=|x|\), and it is decreasing, i.e., \(u_r<0\) for \(0<r<R\).
The introduction contains a detailed review of earlier results and a comparison with the results obtained in the reviewed article.

MSC:

35R11 Fractional partial differential equations
35B45 A priori estimates in context of PDEs
35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs
35A25 Other special methods applied to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35B09 Positive solutions to PDEs

Cite

References:

[1]Ambrosetti, A.; Rabinowitz, P., Dual variational methods in critical points theory and applications, J. Funct. Anal., 14, 349-381 (1973) ·Zbl 0273.49063
[2]Applebaum, D., Lévy processes—from probability to finance and quantum groups, Notices Amer. Math. Soc., 51, 1336-1347 (2004) ·Zbl 1053.60046
[3]Berestycki, H.; Nirenberg, L., On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat., 22, 1-37 (1991) ·Zbl 0784.35025
[4]Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, 437-477 (1983) ·Zbl 0541.35029
[5]Cabré, X.; Solà-Morales, J., Layer solutions in a halfspace for boundary reactions, Comm. Pure Appl. Math., 58, 1678-1732 (2005) ·Zbl 1102.35034
[6]Caffarelli, L.; Salsa, S.; Silvestre, L., Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171, 425-461 (2008) ·Zbl 1148.35097
[7]Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 1245-1260 (2007) ·Zbl 1143.26002
[9]Chipot, M.; Chlebík, M.; Fila, M.; Shafrir, I., Existence of positive solutions of a semilinear elliptic equation in \(R_+^n\) with a nonlinear boundary condition, J. Math. Anal. Appl., 223, 429-471 (1998) ·Zbl 0932.35086
[10]Davila, J., Singular solutions of semi-linear elliptic problems, (Handbook of Differential Equations, vol. 2, Stationary Partial Differential Equations (2009), Elsevier Science), Chapter 2 ·Zbl 1191.35131
[11]Davila, J.; Dupaigne, L.; Montenegro, M., The extremal solution of a boundary reaction problem, Commun. Pure Appl. Anal., 7, 795-817 (2008) ·Zbl 1156.35039
[12]Escobar, J., Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J., 37, 687-698 (1988) ·Zbl 0666.35014
[13]Gidas, B.; Ni, W.-M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68, 209-243 (1979) ·Zbl 0425.35020
[14]Gidas, B.; Spruck, J., A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6, 883-901 (1981) ·Zbl 0462.35041
[15]Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Classics in Mathematics (2001), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0691.35001
[16]Landkof, N. S., Foundations of Modern Potential Theory (1972), Springer-Verlag ·Zbl 0253.31001
[17]Li, Y. Y.; Zhang, L., Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, J. Anal. Math., 90, 27-87 (2003) ·Zbl 1173.35477
[18]Li, Y. Y.; Zhu, M., Uniqueness theorems through the method of moving spheres, Duke Math. J., 80, 383-417 (1995) ·Zbl 0846.35050
[19]Lions, P. L., The concentration-compactness principle in the calculus of variations, The limit case II, Rev. Mat. Iberoamericana, 1, 45-121 (1985) ·Zbl 0704.49006
[20]Lions, J. L.; Magenes, E., Non-homogeneous Boundary Value Problems and Applications, vol. I, Die Grundlehren der Math. Wissenschaften, vol. 181 (1972), Springer-Verlag ·Zbl 0223.35039
[21]Nekvinda, A., Characterization of traces of the weighted Sobolev space \(W^{1, p}(\Omega, d^{\epsilon_M})\) on \(M\), Czechoslovak Math. J., 43, 118, 695-711 (1993) ·Zbl 0832.46026
[22]Ou, B., Positive harmonic functions on the upper half space satisfying a nonlinear boundary condition, Differential Integral Equations, 9, 1157-1164 (1996) ·Zbl 0853.35045
[23]Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60, 67-112 (2006) ·Zbl 1141.49035
[24]Struwe, M., Variational Methods, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34 (1996), Springer-Verlag ·Zbl 0864.49001
[25]Sugitani, S., On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math., 12, 45-51 (1975) ·Zbl 0303.45010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp