[1] | Ambrosetti, A.; Rabinowitz, P., Dual variational methods in critical points theory and applications, J. Funct. Anal., 14, 349-381 (1973) ·Zbl 0273.49063 |
[2] | Applebaum, D., Lévy processes—from probability to finance and quantum groups, Notices Amer. Math. Soc., 51, 1336-1347 (2004) ·Zbl 1053.60046 |
[3] | Berestycki, H.; Nirenberg, L., On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat., 22, 1-37 (1991) ·Zbl 0784.35025 |
[4] | Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, 437-477 (1983) ·Zbl 0541.35029 |
[5] | Cabré, X.; Solà-Morales, J., Layer solutions in a halfspace for boundary reactions, Comm. Pure Appl. Math., 58, 1678-1732 (2005) ·Zbl 1102.35034 |
[6] | Caffarelli, L.; Salsa, S.; Silvestre, L., Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171, 425-461 (2008) ·Zbl 1148.35097 |
[7] | Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 1245-1260 (2007) ·Zbl 1143.26002 |
[9] | Chipot, M.; Chlebík, M.; Fila, M.; Shafrir, I., Existence of positive solutions of a semilinear elliptic equation in \(R_+^n\) with a nonlinear boundary condition, J. Math. Anal. Appl., 223, 429-471 (1998) ·Zbl 0932.35086 |
[10] | Davila, J., Singular solutions of semi-linear elliptic problems, (Handbook of Differential Equations, vol. 2, Stationary Partial Differential Equations (2009), Elsevier Science), Chapter 2 ·Zbl 1191.35131 |
[11] | Davila, J.; Dupaigne, L.; Montenegro, M., The extremal solution of a boundary reaction problem, Commun. Pure Appl. Anal., 7, 795-817 (2008) ·Zbl 1156.35039 |
[12] | Escobar, J., Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J., 37, 687-698 (1988) ·Zbl 0666.35014 |
[13] | Gidas, B.; Ni, W.-M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68, 209-243 (1979) ·Zbl 0425.35020 |
[14] | Gidas, B.; Spruck, J., A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6, 883-901 (1981) ·Zbl 0462.35041 |
[15] | Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Classics in Mathematics (2001), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0691.35001 |
[16] | Landkof, N. S., Foundations of Modern Potential Theory (1972), Springer-Verlag ·Zbl 0253.31001 |
[17] | Li, Y. Y.; Zhang, L., Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, J. Anal. Math., 90, 27-87 (2003) ·Zbl 1173.35477 |
[18] | Li, Y. Y.; Zhu, M., Uniqueness theorems through the method of moving spheres, Duke Math. J., 80, 383-417 (1995) ·Zbl 0846.35050 |
[19] | Lions, P. L., The concentration-compactness principle in the calculus of variations, The limit case II, Rev. Mat. Iberoamericana, 1, 45-121 (1985) ·Zbl 0704.49006 |
[20] | Lions, J. L.; Magenes, E., Non-homogeneous Boundary Value Problems and Applications, vol. I, Die Grundlehren der Math. Wissenschaften, vol. 181 (1972), Springer-Verlag ·Zbl 0223.35039 |
[21] | Nekvinda, A., Characterization of traces of the weighted Sobolev space \(W^{1, p}(\Omega, d^{\epsilon_M})\) on \(M\), Czechoslovak Math. J., 43, 118, 695-711 (1993) ·Zbl 0832.46026 |
[22] | Ou, B., Positive harmonic functions on the upper half space satisfying a nonlinear boundary condition, Differential Integral Equations, 9, 1157-1164 (1996) ·Zbl 0853.35045 |
[23] | Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60, 67-112 (2006) ·Zbl 1141.49035 |
[24] | Struwe, M., Variational Methods, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34 (1996), Springer-Verlag ·Zbl 0864.49001 |
[25] | Sugitani, S., On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math., 12, 45-51 (1975) ·Zbl 0303.45010 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.