Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Knudsen gas in a finite random tube: Transport diffusion and first passage properties.(English)Zbl 1197.82058

Summary: We consider transport diffusion in a stochastic billiard in a random tube which is elongated in the direction of the first coordinate (the tube axis). Inside the random tube, which is stationary and ergodic, non-interacting particles move straight with constant speed. Upon hitting the tube walls, they are reflected randomly, according to the cosine law: the density of the outgoing direction is proportional to the cosine of the angle between this direction and the normal vector. Steady state transport is studied by introducing an open tube segment as follows: We cut out a large finite segment of the tube with segment boundaries perpendicular to the tube axis. Particles which leave this piece through the segment boundaries disappear from the system. Through stationary injection of particles at one boundary of the segment a steady state with non-vanishing stationary particle current is maintained. We prove (i) that in the thermodynamic limit of an infinite open piece the coarse-grained density profile inside the segment is linear, and (ii) that the transport diffusion coefficient obtained from the ratio of stationary current and effective boundary density gradient equals the diffusion coefficient of a tagged particle in an infinite tube. Thus, we prove Fick’s law and equality of transport diffusion and self-diffusion coefficients for quite generic rough (random) tubes. We also study some properties of the crossing time and compute the Milne extrapolation length in dependence on the shape of the random tube.

MSC:

82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
37A60 Dynamical aspects of statistical mechanics
82C70 Transport processes in time-dependent statistical mechanics

Cite

References:

[1]Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs. http://www.stat.berkeley.edu/\(\sim\)aldous/RWG/Chap3.pdf
[2]Bernardin, C., Olla, S.: Fourier law and fluctuations for a microscopic model of heat conduction. J. Stat. Phys. 121(3/4), 271–289 (2005) ·Zbl 1127.82042 ·doi:10.1007/s10955-005-7578-9
[3]Borodin, A.N., Salminen, P.: Handbook of Brownian Motion–Facts and Formulae, 2nd edn. Birkhäuser, Basel-Boston-Berlin (2002) ·Zbl 1012.60003
[4]Case, K.M., Zweifel, P.F.: Linear Transport Theory. Addison-Wesley, Reading (1967) ·Zbl 0162.58903
[5]Chen, Z.-Q.: On notions of harmonicity. Proc. Am. Math. Soc. 137, 3497–3510 (2009) ·Zbl 1181.60118 ·doi:10.1090/S0002-9939-09-09945-6
[6]Comets, F., Popov, S., Schütz, G.M., Vachkovskaia, M.: Billiards in a general domain with random reflections. Arch. Ration. Mech. Anal. 191(3), 497–537 (2009) ·Zbl 1186.37049 ·doi:10.1007/s00205-008-0120-x
[7]Comets, F., Popov, S., Schütz, G.M., Vachkovskaia, M.: Erratum. Arch. Ration. Mech. Anal. 193, 737–738 (2009) ·Zbl 1173.37319 ·doi:10.1007/s00205-009-0236-7
[8]Comets, F., Popov, S., Schütz, G.M., Vachkovskaia, M.: Quenched invariance principle for Knudsen stochastic billiard in random tube. Ann. Probab. 38(3), 1019–1061 (2010) ·Zbl 1200.60091 ·doi:10.1214/09-AOP504
[9]Cooper, R.B.: Introduction to Queueing Theory, 2nd edn. North Holland, Amsterdam (1981) ·Zbl 0486.60002
[10]Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Elementary Theory and Methods, vol. I, 2nd edn. Springer, New York (2003) ·Zbl 1026.60061
[11]Doob, J.L.: Stochastic Processes. Wiley, New York (1953)
[12]De Masi, A., Ferrari, P., Goldstein, S., Wick, W.: An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55, 787–855 (1989) ·Zbl 0713.60041 ·doi:10.1007/BF01041608
[13]Faggionato, A., Schulz-Baldes, H., Spehner, D.: Mott law as lower bound for a random walk in a random environment. Commun. Math. Phys. 263, 21–64 (2006) ·Zbl 1153.82007 ·doi:10.1007/s00220-005-1492-5
[14]Gaspard, P., Gilbert, T.: Heat conduction and Fourier’s law in a class of many particle dispersing billiards. New J. Phys. 10, 103004 (2008) ·doi:10.1088/1367-2630/10/10/103004
[15]Heitjans, P., Kärger, J. (eds.): Diffusion in Condensed Matter–Methods, Materials, Models. Springer, Berlin-Heidelberg (2005)
[16]Liggett, T.M.: Random invariant measures for Markov chains, and independent particle systems. Z. Wahrscheinlichkeitstheor. verw. Geb 45, 297–313 (1978) ·Zbl 0373.60076 ·doi:10.1007/BF00537539
[17]Malek, K., Coppens, M.-O.: Effects of surface roughness on self- and transport diffusion in porous media in the Knudsen regime. Phys. Rev. Lett. 87(12), 125505 (2001) ·doi:10.1103/PhysRevLett.87.125505
[18]Malek, K., Coppens, M.-O.: Pore roughness effects on self- and transport diffusion in nanoporous materials. Colloids Surf. A 206, 335–348 (2003) ·doi:10.1016/S0927-7757(02)00050-X
[19]Malek, K., Coppens, M.-O.: Knudsen self- and Fickian diffusion in rough nanoporous media. J. Chem. Phys. 119(5), 2801–2811 (2003) ·doi:10.1063/1.1584652
[20]Mathieu, P.: Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130(5), 1025–1046 (2008) ·Zbl 1214.82044 ·doi:10.1007/s10955-007-9465-z
[21]Menshikov, M.V., Vachkovskaia, M., Wade, A.R.: Asymptotic behaviour of randomly reflecting billiards in unbounded tubular domains. J. Stat. Phys. 132(6), 1097–1133 (2008) ·Zbl 1157.82036 ·doi:10.1007/s10955-008-9578-z
[22]Russ, S., Zschiegner, S., Bunde, A., Kärger, J.: Lambert diffusion in porous media in the Knudsen regime: equivalence of self- and transport diffusion. Phys. Rev. E 72, 030101(R) (2005) ·doi:10.1103/PhysRevE.72.030101
[23]van Hijkoop, V.J., Dammers, A.J., Malek, K., Coppens, M.-O.: Water diffusion through a membrane protein channel: a first passage time approach. J. Chem. Phys. 127, 085101 (2007)
[24]Zschiegner, S., Russ, S., Bunde, A., Kärger, J.: Pore opening effects and transport diffusion in the Knudsen regime in comparison to self- (or tracer-) diffusion. Europhys. Lett. 78(2), 200001 (2007) ·doi:10.1209/0295-5075/78/20001
[25]Zschiegner, S., Russ, S., Bunde, A., Coppens, M.-O., Kärger, J.: Normal and anomalous Knudsen diffusion in 2D and 3D channel pores. Diffus. Fundam 7, 17.1–17.2 (2007)
[26]Zschiegner, S., Russ, S., Valiullin, R., Coppens, M.-O., Dammers, A.-J., Bunde, A., Kärger, J.: Normal and anomalous diffusion of non-interacting particles in linear nanopores. Eur. Phys. J. 161, 109 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp