[1] | Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs. http://www.stat.berkeley.edu/\(\sim\)aldous/RWG/Chap3.pdf |
[2] | Bernardin, C., Olla, S.: Fourier law and fluctuations for a microscopic model of heat conduction. J. Stat. Phys. 121(3/4), 271–289 (2005) ·Zbl 1127.82042 ·doi:10.1007/s10955-005-7578-9 |
[3] | Borodin, A.N., Salminen, P.: Handbook of Brownian Motion–Facts and Formulae, 2nd edn. Birkhäuser, Basel-Boston-Berlin (2002) ·Zbl 1012.60003 |
[4] | Case, K.M., Zweifel, P.F.: Linear Transport Theory. Addison-Wesley, Reading (1967) ·Zbl 0162.58903 |
[5] | Chen, Z.-Q.: On notions of harmonicity. Proc. Am. Math. Soc. 137, 3497–3510 (2009) ·Zbl 1181.60118 ·doi:10.1090/S0002-9939-09-09945-6 |
[6] | Comets, F., Popov, S., Schütz, G.M., Vachkovskaia, M.: Billiards in a general domain with random reflections. Arch. Ration. Mech. Anal. 191(3), 497–537 (2009) ·Zbl 1186.37049 ·doi:10.1007/s00205-008-0120-x |
[7] | Comets, F., Popov, S., Schütz, G.M., Vachkovskaia, M.: Erratum. Arch. Ration. Mech. Anal. 193, 737–738 (2009) ·Zbl 1173.37319 ·doi:10.1007/s00205-009-0236-7 |
[8] | Comets, F., Popov, S., Schütz, G.M., Vachkovskaia, M.: Quenched invariance principle for Knudsen stochastic billiard in random tube. Ann. Probab. 38(3), 1019–1061 (2010) ·Zbl 1200.60091 ·doi:10.1214/09-AOP504 |
[9] | Cooper, R.B.: Introduction to Queueing Theory, 2nd edn. North Holland, Amsterdam (1981) ·Zbl 0486.60002 |
[10] | Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Elementary Theory and Methods, vol. I, 2nd edn. Springer, New York (2003) ·Zbl 1026.60061 |
[11] | Doob, J.L.: Stochastic Processes. Wiley, New York (1953) |
[12] | De Masi, A., Ferrari, P., Goldstein, S., Wick, W.: An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55, 787–855 (1989) ·Zbl 0713.60041 ·doi:10.1007/BF01041608 |
[13] | Faggionato, A., Schulz-Baldes, H., Spehner, D.: Mott law as lower bound for a random walk in a random environment. Commun. Math. Phys. 263, 21–64 (2006) ·Zbl 1153.82007 ·doi:10.1007/s00220-005-1492-5 |
[14] | Gaspard, P., Gilbert, T.: Heat conduction and Fourier’s law in a class of many particle dispersing billiards. New J. Phys. 10, 103004 (2008) ·doi:10.1088/1367-2630/10/10/103004 |
[15] | Heitjans, P., Kärger, J. (eds.): Diffusion in Condensed Matter–Methods, Materials, Models. Springer, Berlin-Heidelberg (2005) |
[16] | Liggett, T.M.: Random invariant measures for Markov chains, and independent particle systems. Z. Wahrscheinlichkeitstheor. verw. Geb 45, 297–313 (1978) ·Zbl 0373.60076 ·doi:10.1007/BF00537539 |
[17] | Malek, K., Coppens, M.-O.: Effects of surface roughness on self- and transport diffusion in porous media in the Knudsen regime. Phys. Rev. Lett. 87(12), 125505 (2001) ·doi:10.1103/PhysRevLett.87.125505 |
[18] | Malek, K., Coppens, M.-O.: Pore roughness effects on self- and transport diffusion in nanoporous materials. Colloids Surf. A 206, 335–348 (2003) ·doi:10.1016/S0927-7757(02)00050-X |
[19] | Malek, K., Coppens, M.-O.: Knudsen self- and Fickian diffusion in rough nanoporous media. J. Chem. Phys. 119(5), 2801–2811 (2003) ·doi:10.1063/1.1584652 |
[20] | Mathieu, P.: Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130(5), 1025–1046 (2008) ·Zbl 1214.82044 ·doi:10.1007/s10955-007-9465-z |
[21] | Menshikov, M.V., Vachkovskaia, M., Wade, A.R.: Asymptotic behaviour of randomly reflecting billiards in unbounded tubular domains. J. Stat. Phys. 132(6), 1097–1133 (2008) ·Zbl 1157.82036 ·doi:10.1007/s10955-008-9578-z |
[22] | Russ, S., Zschiegner, S., Bunde, A., Kärger, J.: Lambert diffusion in porous media in the Knudsen regime: equivalence of self- and transport diffusion. Phys. Rev. E 72, 030101(R) (2005) ·doi:10.1103/PhysRevE.72.030101 |
[23] | van Hijkoop, V.J., Dammers, A.J., Malek, K., Coppens, M.-O.: Water diffusion through a membrane protein channel: a first passage time approach. J. Chem. Phys. 127, 085101 (2007) |
[24] | Zschiegner, S., Russ, S., Bunde, A., Kärger, J.: Pore opening effects and transport diffusion in the Knudsen regime in comparison to self- (or tracer-) diffusion. Europhys. Lett. 78(2), 200001 (2007) ·doi:10.1209/0295-5075/78/20001 |
[25] | Zschiegner, S., Russ, S., Bunde, A., Coppens, M.-O., Kärger, J.: Normal and anomalous Knudsen diffusion in 2D and 3D channel pores. Diffus. Fundam 7, 17.1–17.2 (2007) |
[26] | Zschiegner, S., Russ, S., Valiullin, R., Coppens, M.-O., Dammers, A.-J., Bunde, A., Kärger, J.: Normal and anomalous diffusion of non-interacting particles in linear nanopores. Eur. Phys. J. 161, 109 (2008) |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.