Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On vertex algebra representations of the Schrödinger-Virasoro Lie algebra.(English)Zbl 1196.81209

Summary: The Schrödinger-Virasoro Lie algebra \(\mathfrak{sv}\) is an extension of the Virasoro Lie algebra by a nilpotent Lie algebra formed with a bosonic current of weight \(\frac{3}{2}\) and a bosonic current of weight 1. It is also a natural infinite-dimensional extension of the Schrödinger Lie algebra, which – leaving aside the invariance under time-translation – has been proved to be a symmetry algebra for many statistical physics models undergoing a dynamics with dynamical exponent \(z=2\).We define in this article general Schrödinger-Virasoro primary fields by analogy with conformal field theory, characterized by a ‘spin’ index and a (non-relativistic) mass, and construct vertex algebra representations of \(\mathfrak{sv}\) out of a charged symplectic boson and a free boson and its associated vertex operators. We also compute two- and three-point functions of still conjectural massive fields that are defined by an analytic continuation with respect to a formal parameter.

MSC:

17B69 Vertex operators; vertex operator algebras and related structures
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

Cite

References:

[1]Henkel, M., J. Stat. Phys., 75, 1023 (1994) ·Zbl 0828.60095
[2]Roger, C.; Unterberger, J., Ann. Henri Poincaré, 7, 1477 (2006) ·Zbl 1109.81041
[3]Neveu, A.; Schwarz, J. H., Nucl. Phys. B, 31, 86 (1971)
[4]Kac, V., Vertex Algebras for Beginners (1997), University Lecture Series: University Lecture Series AMS
[5]Li, J.; Su, Y., Representations of the Schrödinger-Virasoro algebras, J. Math. Phys., 49, 5, 1 (2008) ·Zbl 1152.81529
[6]J. Unterberger, A classification of periodic time-dependent generalized harmonic oscillators using a Hamiltonian action of the Schrödinger-Virasoro group, submitted for publication; J. Unterberger, A classification of periodic time-dependent generalized harmonic oscillators using a Hamiltonian action of the Schrödinger-Virasoro group, submitted for publication
[7]Lie, S., Arch. Math. Nat. Vid. (Kristiania), 6, 328 (1882)
[8]Niederer, U., Helv. Phys. Acta, 45, 802 (1972)
[9]Niederer, U., Helv. Phys. Acta, 47, 167 (1974)
[10]Henkel, M.; Unterberger, J., Nucl. Phys. B, 660, 407 (2003) ·Zbl 1044.81028
[11]Picone, A.; Henkel, M., Nucl. Phys. B, 688, 217 (2004) ·Zbl 1149.82331
[12]Bray, A. J., Adv. Phys., 43, 357 (1994)
[13]Henkel, M., Nucl. Phys. B, 641, 405 (2002) ·Zbl 0998.82023
[14]Pleimling, M., Phys. Rev. B, 65, 184406 (2002)
[15]Diehl, H. W.; Shpot, M. A.; Prudnikov, P. V., J. Phys. A, 39, 7927 (2006) ·Zbl 1097.81047
[16]Duval, C.; Horvathy, P.; Palla, L., Conformal symmetries of the coupled Chern-Simons and gauged nonlinear Schrödinger equation, Phys. Lett. B, 325, 39 (1994)
[17]Ivashkevitch, E., Symmetries of the stochastic Burgers equation, J. Phys. A, 30, 15, 525 (1997) ·Zbl 0924.35202
[18]O’Raifeartaigh, L.; Sreedhar, V. V., The maximal kinematical invariance group of fluid dynamics and explosion-implosion duality, Ann. Phys., 293, 215 (2001) ·Zbl 1071.76556
[19]Fushchich, W. I.; Shtelen, W. M.; Serov, N. I., Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics (1993), Kluwer: Kluwer Dordrecht ·Zbl 0838.58043
[20]Nattermann, P.; Doebner, H.-D., Gauge classification, Lie symmetries and integrability of a family of nonlinear Schrödinger equations, Nonlinear Math. Phys., 3, 302-310 (1996) ·Zbl 0948.35117
[21]Duval, C.; Horvathy, P., Spin and exotic Galilean symmetry, Phys. Lett. B, 547, 306 (2002) ·Zbl 1047.81593
[22]Duval, C.; Künzle, H. P., Minimal gravitational coupling in the Newtonian theory and the covariant Schrödinger equation, Gen. Relativ. Gravit., 16, 4 (1984) ·Zbl 0583.53061
[23]Duval, C., Nonrelativistic conformal symmetries and Bargmann structures, (Conformal Groups and Related Symmetries: Physical Results and Mathematical Background. Conformal Groups and Related Symmetries: Physical Results and Mathematical Background, Springer Lecture Notes in Physics, vol. 261 (1986))
[24]Duval, C.; Gibbons, G.; Horváthy, P., Celestial mechanics, conformal structures, and gravitational waves, Phys. Rev. D, 43, 12 (1991)
[25]Duval, C., On Galilean isometries, Class. Quantum Grav., 10, 2217-2221 (1993) ·Zbl 0793.53102
[26]Künzle, H. P.; Duval, C., Dirac field on Newtonian space-time, Ann. Inst. Henri Poincaré (A) Phys. Theor., 41, 4, 363 (1984) ·Zbl 0583.53061
[27]Leiva, C.; Plyushchay, M. S., Conformal symmetry of relativistic and nonrelativistic systems and AdS/CFT correspondence, Ann. Phys., 307, 372 (2003) ·Zbl 1040.81070
[28]Duval, C.; Hassaïne, M.; Horvathy, P., The geometry of Schrödinger symmetry in non-relativistic conformal field theory, Ann. Phys., 324, 5, 1158 (2009) ·Zbl 1162.81034
[29]Mintchev, M.; Ragoucy, E.; Sorba, P., Yangian symmetry in the nonlinear Schrödinger hierarchy, J. Phys. A, 32, 5885 (1999) ·Zbl 0953.81102
[30]Ballesteros, A.; Herranz, F. J.; Parashar, P., A Jordanian quantum two-photon Schrödinger algebra, J. Phys. A, 30, 8587-8597 (1997) ·Zbl 0940.81028
[31]Ballesteros, A.; Herranz, F. J.; Parashar, P., \((1 + 1)\)-Schrödinger Lie bialgebras and their Poisson-Lie group, J. Phys. A Math. Gen., 33, 3445-3465 (2000) ·Zbl 0999.81028
[32]Dobrev, V.; Doebner, H.-D.; Mrugalla, C., A \(q\)-Schrödinger algebra, its lowest weight representations and generalized \(q\)-deformed heat/Schrödinger equations, J. Phys. A, 29, 5909 (1996) ·Zbl 0901.17012
[33]Dobrev, V.; Doebner, H.-D.; Mrugalla, C., Lowest weight representations of the Schrödinger algebra and generalized heat equations, Rep. Math. Phys., 39, 201-218 (1997) ·Zbl 0884.22009
[34]Dobrev, V.; Doebner, H.-D.; Mrugalla, C., Difference analogues of the free Schrödinger equation, Mod. Phys. Lett. A, 14, 1113 (1999)
[35]Henkel, M.; Picone, A.; Pleimling, M.; Unterberger, J.
[36]Henkel, M., J. Phys. Condens. Matter, 19, 065101 (2007)
[37]Di Francesco, P.; Mathieu, P.; Sénéchal, D., Conformal Field Theory (1997), Springer ·Zbl 0869.53052
[38]Fushchych, W.; Chopyk, V.; Nattermann, P.; Scherer, W., Symmetries and reductions of nonlinear Schrödinger equations of Doebner-Goldin type, Rep. Math. Phys., 35, 1, 129-138 (1995) ·Zbl 0884.35147
[39]Nattermann, P., Symmetry, local liberalization, and gauge classification of the Doebner-Goldin equation, Rep. Math. Phys., 36, 387-402 (1995) ·Zbl 0884.35151
[40]Henkel, M.; Unterberger, J., Nucl. Phys. B, 746, 155 (2006) ·Zbl 1178.81100
[41]Stoimenov, S.; Henkel, M., Nucl. Phys. B, 723, 205 (2005) ·Zbl 1178.35024
[42]Burdet, G.; Perrin, M.; Sorba, P., Commun. Math. Phys., 34, 85 (1973) ·Zbl 0273.22017
[43]Guieu, L.; Roger, C., L’algèbre et le groupe de Virasoro: Aspects géométriques et algébriques, généralisations (2007), Publications du CRM: Publications du CRM Montréal ·Zbl 1151.17011
[44]Albert, C.; Molino, P., Pseudogroupes de Lie transitifs. I (1984), Hermann: Hermann Paris ·Zbl 0563.53027
[45]Friedan, D.; Martinec, E.; Shenker, S., Nucl. Phys. B, 271, 93 (1986)
[46]de Boer, J.; Feher, L., Commun. Math. Phys., 189, 759 (1997) ·Zbl 0932.81014
[47]Abramowitz, M.; Stegun, A.; Danos, M.; Rafelski, J., Handbook of Mathematical Functions (1984), Harri Deutsch: Harri Deutsch Frankfurt ·Zbl 0643.33002
[48]Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.; Bateman, H., Tables of Integral Transforms, vol. 1 (1954), McGraw-Hill ·Zbl 0055.36401
[49]Hansen, E., A Table of Series and Products (1975), Prentice-Hall: Prentice-Hall New Jersey ·Zbl 0438.00001
[50]Gradshteyn, I.; Ryzhik, I., Table of Integrals, Series, and Products (1980), Academic Press ·Zbl 0521.33001
[51]Baumann, F.; Stoimenov, S.; Henkel, M., J. Phys. A, 39, 4095-4118 (2006) ·Zbl 1117.82019
[52]Henkel, M.; Picone, A.; Pleimling, M., Europhys. Lett., 68, 191 (2004)
[53]M. Henkel, private communication; M. Henkel, private communication
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp