Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The dynamic complexity of an impulsive Holling II predator-prey model with mutual interference.(English)Zbl 1195.34018

Summary: In this paper we study the dynamic behaviors of an impulsive Holling II predator-prey model with mutual interference. Some sufficient conditions ensuring the prey to be extinct are obtained via the Floquent theory. We also derive some conditions for the permanence of the system by using the comparison method involving multiple Laypunov functions. Finally, the numerical simulation shows that the impulsive system has complex dynamics properties such as quasi-periodic oscillation, narrow periodic window, wide periodic window, chaotic bands, period-doubling bifurcation, symmetry-breaking pitchfork bifurcation, period-halving bifurcation and crises.

MSC:

34A37 Ordinary differential equations with impulses
92D25 Population dynamics (general)

Cite

References:

[1]Amine, Z.; Ortega, R., A periodic prey-predator system, J. Math. Anal. Appl., 185, 477-489 (1994) ·Zbl 0808.34043
[2]Sabin, G. C.W.; Summers, D., Chaos in a periodically forced predator-prey ecosystem model, Math. Biosci., 113, 1, 91-113 (1993) ·Zbl 0767.92028
[3]Liu, X. N.; Chen, L. S., Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator, Chaos Soliton. Fract., 16, 2, 311-320 (2003) ·Zbl 1085.34529
[4]Liu, B.; Zhang, D. Z.; Chen, L. S., Dynamic complexities of a Holling I predator-prey model concerning biological and chemical control, Chaos Soliton. Fract., 22, 1, 123-134 (2004) ·Zbl 1058.92047
[5]Zhang, S. W.; Chen, L. S., A Holling II functional response food chain model with impulsive perturbations, Chaos Soliton. Fract., 24, 1269-1278 (2005) ·Zbl 1086.34043
[6]Debach, P.; Rosen, D., Biological Control by Natural Enemies (1991), Cambridge University: Cambridge University New York
[7]Holling, C. S., The functional response of predator to prey density and its role in mimicry and population regulation, Entomol. Soc. Canada, 45, 1-60 (1965)
[8]Jin, Z.; Han, M.; Li, G., The persistence in a Lotka-Volterra competition systems with impulsive, Chaos Soliton. Fract., 24, 1105-1117 (2005) ·Zbl 1081.34045
[9]Ballinger, G.; Liu, X., Permanence of population growth models with impulsive effects, Math. Comput. Model., 26, 2, 59-72 (1997) ·Zbl 1185.34014
[10]Lenci, S.; Rega, G., Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation, Chaos Soliton. Fract., 11, 2453-2472 (2000) ·Zbl 0964.70018
[11]Tang, S.; Chen, L., Chaos in functional response host-parasitoid ecosystem models, Chaos Soliton. Fract., 13, 875-884 (2002) ·Zbl 1022.92042
[12]Liu, B.; Teng, Z.; Chen, L., Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy, Comput. Appl. Math., 193, 347-362 (2006) ·Zbl 1089.92060
[13]Zhang, S.; Tan, D.; Chen, L., Chaotic behavior of a chemostatmodel with Beddington-DeAngelis functional responsean periodically impulsive invasion, Chaos Soliton. Fract., 24, 1269-1278 (2005) ·Zbl 1086.34043
[14]Li, Z.; Wang, W.; Wang, H., The dynamics of a Beddington-type system with impulsive control strategy, Chaos Soliton. Fract., 29, 1229-1239 (2006) ·Zbl 1142.34305
[15]Zhou, X.; Song, X.; S, X., Analysis of competitive chemostat models with the Beddington-DeAngelis functional response, Appl. Math. Model., 31, 2299-2312 (2007) ·Zbl 1137.34026
[16]Lakshmikantham, V.; Bainov, D.; Simeonov, P., Theory of Impulsive Differential Equations (1989), World Scientific: World Scientific Singapore ·Zbl 0719.34002
[17]Samoislenko, A. M.; Perestyuk, N. A., Impulsive Differential Equations (1995), World Scientific: World Scientific Singapore ·Zbl 0837.34003
[18]Tang, S. Y.; Chen, L. S., Multiple attractors in stage-structured population models with birth pulses, Bull. Math. Biol., 65, 479-495 (2003) ·Zbl 1334.92371
[19]Zhang, S. W.; Dong, L. Z.; Chen, L. S., The study of predator-prey system with defensive ability of prey and impulsive perturbations on the predator, Chaos Soliton. Fract., 23, 631-643 (2005) ·Zbl 1081.34041
[20]Xiang, Z. Y.; Song, X. Y., Extinction and permanence of a two-prey two-predator system with impulsive on the predator, Chaos Soliton. Fract., 29, 1121-1136 (2006) ·Zbl 1142.34306
[21]Jiao, J.; Chen, L.; Cai, S., Impulsive control strategy of a pest management SI model with nonlinear incidence rate, Appl. Math. Model., 33, 555-563 (2009) ·Zbl 1167.34340
[22]Wang, X. Q.; Wang, W. M., The dynamical complexity of an impulsive Watt-type prey-predator system, Chaos Soliton. Fract., 40, 731-744 (2009) ·Zbl 1197.37125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp