[1] | Amine, Z.; Ortega, R., A periodic prey-predator system, J. Math. Anal. Appl., 185, 477-489 (1994) ·Zbl 0808.34043 |
[2] | Sabin, G. C.W.; Summers, D., Chaos in a periodically forced predator-prey ecosystem model, Math. Biosci., 113, 1, 91-113 (1993) ·Zbl 0767.92028 |
[3] | Liu, X. N.; Chen, L. S., Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator, Chaos Soliton. Fract., 16, 2, 311-320 (2003) ·Zbl 1085.34529 |
[4] | Liu, B.; Zhang, D. Z.; Chen, L. S., Dynamic complexities of a Holling I predator-prey model concerning biological and chemical control, Chaos Soliton. Fract., 22, 1, 123-134 (2004) ·Zbl 1058.92047 |
[5] | Zhang, S. W.; Chen, L. S., A Holling II functional response food chain model with impulsive perturbations, Chaos Soliton. Fract., 24, 1269-1278 (2005) ·Zbl 1086.34043 |
[6] | Debach, P.; Rosen, D., Biological Control by Natural Enemies (1991), Cambridge University: Cambridge University New York |
[7] | Holling, C. S., The functional response of predator to prey density and its role in mimicry and population regulation, Entomol. Soc. Canada, 45, 1-60 (1965) |
[8] | Jin, Z.; Han, M.; Li, G., The persistence in a Lotka-Volterra competition systems with impulsive, Chaos Soliton. Fract., 24, 1105-1117 (2005) ·Zbl 1081.34045 |
[9] | Ballinger, G.; Liu, X., Permanence of population growth models with impulsive effects, Math. Comput. Model., 26, 2, 59-72 (1997) ·Zbl 1185.34014 |
[10] | Lenci, S.; Rega, G., Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation, Chaos Soliton. Fract., 11, 2453-2472 (2000) ·Zbl 0964.70018 |
[11] | Tang, S.; Chen, L., Chaos in functional response host-parasitoid ecosystem models, Chaos Soliton. Fract., 13, 875-884 (2002) ·Zbl 1022.92042 |
[12] | Liu, B.; Teng, Z.; Chen, L., Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy, Comput. Appl. Math., 193, 347-362 (2006) ·Zbl 1089.92060 |
[13] | Zhang, S.; Tan, D.; Chen, L., Chaotic behavior of a chemostatmodel with Beddington-DeAngelis functional responsean periodically impulsive invasion, Chaos Soliton. Fract., 24, 1269-1278 (2005) ·Zbl 1086.34043 |
[14] | Li, Z.; Wang, W.; Wang, H., The dynamics of a Beddington-type system with impulsive control strategy, Chaos Soliton. Fract., 29, 1229-1239 (2006) ·Zbl 1142.34305 |
[15] | Zhou, X.; Song, X.; S, X., Analysis of competitive chemostat models with the Beddington-DeAngelis functional response, Appl. Math. Model., 31, 2299-2312 (2007) ·Zbl 1137.34026 |
[16] | Lakshmikantham, V.; Bainov, D.; Simeonov, P., Theory of Impulsive Differential Equations (1989), World Scientific: World Scientific Singapore ·Zbl 0719.34002 |
[17] | Samoislenko, A. M.; Perestyuk, N. A., Impulsive Differential Equations (1995), World Scientific: World Scientific Singapore ·Zbl 0837.34003 |
[18] | Tang, S. Y.; Chen, L. S., Multiple attractors in stage-structured population models with birth pulses, Bull. Math. Biol., 65, 479-495 (2003) ·Zbl 1334.92371 |
[19] | Zhang, S. W.; Dong, L. Z.; Chen, L. S., The study of predator-prey system with defensive ability of prey and impulsive perturbations on the predator, Chaos Soliton. Fract., 23, 631-643 (2005) ·Zbl 1081.34041 |
[20] | Xiang, Z. Y.; Song, X. Y., Extinction and permanence of a two-prey two-predator system with impulsive on the predator, Chaos Soliton. Fract., 29, 1121-1136 (2006) ·Zbl 1142.34306 |
[21] | Jiao, J.; Chen, L.; Cai, S., Impulsive control strategy of a pest management SI model with nonlinear incidence rate, Appl. Math. Model., 33, 555-563 (2009) ·Zbl 1167.34340 |
[22] | Wang, X. Q.; Wang, W. M., The dynamical complexity of an impulsive Watt-type prey-predator system, Chaos Soliton. Fract., 40, 731-744 (2009) ·Zbl 1197.37125 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.