Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Overview and construction of meshfree basis functions: from moving least squares to entropy approximants.(English)Zbl 1194.65149

Summary: In this paper, an overview of the construction of meshfree basis functions is presented, with particular emphasis on moving least-squares approximants, natural neighbour-based polygonal interpolants, and entropy approximants. The use of information-theoretic variational principles to derive approximation schemes is a recent development. In this setting, data approximation is viewed as an inductive inference problem, with the basis functions being synonymous with a discrete probability distribution and the polynomial reproducing conditions acting as the linear constraints. The maximization (minimization) of the Shannon-Jaynes entropy functional (relative entropy functional) is used to unify the construction of globally and locally supported convex approximation schemes. A JAVA applet is used to visualize the meshfree basis functions, and comparisons and links between different meshfree approximation schemes are presented.

MSC:

65N99 Numerical methods for partial differential equations, boundary value problems
65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis

Cite

References:

[1]Meyer, Journal of Graphics Tools 7 pp 13– (2002) ·Zbl 1024.68109 ·doi:10.1080/10867651.2002.10487551
[2]Floater, Computer Aided Geometric Design 20 pp 19– (2003)
[3]. Surface parameterization: a tutorial and survey. In Advances in Multiresolution for Geometric Modelling, , (eds), Mathematics and Visualization. Springer: Berlin, Heidelberg, 2005; 157–186. ·Zbl 1065.65030
[4]Sukumar, International Journal for Numerical Methods in Engineering 61 pp 2045– (2004)
[5]Lancaster, Mathematics of Computation 37 pp 141– (1981)
[6]Sibson, Mathematical Proceedings of the Cambridge Philosophical Society 87 pp 151– (1980)
[7]Christ, Nuclear Physics B 210 pp 337– (1982)
[8]Hardy, Journal of Geophysical Research 76 pp 1905– (1971)
[9]Radial Basis Functions: Theory and Implementations. Cambridge University Press: Cambridge, U.K., 2003. ·Zbl 1038.41001 ·doi:10.1017/CBO9780511543241
[10]Scattered Data Approximation. Cambridge University Press: Cambridge, U.K., 2005. ·Zbl 1075.65021
[11]Sukumar, International Journal for Numerical Methods in Engineering 61 pp 2159– (2004)
[12]Arroyo, International Journal for Numerical Methods in Engineering 65 pp 2167– (2006)
[13]Sukumar, AIP Conference Proceedings 803 pp 337– (2005)
[14]Shannon, The Bell Systems Technical Journal 27 pp 379– (1948) ·Zbl 1154.94303 ·doi:10.1002/j.1538-7305.1948.tb01338.x
[15]Jaynes, Physical Review 106 pp 620– (1957)
[16]Information theory and statistical mechanics. In Statistical Physics: The 1962 Brandeis Lectures, (ed.). W. A. Benjamin: New York, 1963; 181–218.
[17]Information Theory and Statistics. Wiley: New York, NY, 1959. ·Zbl 0088.10406
[18]Shore, IEEE Transactions on Information Theory 26 pp 26– (1980)
[19]Convex Analysis. Princeton University Press: Princeton, NJ, 1970. ·Zbl 0932.90001 ·doi:10.1515/9781400873173
[20]. An Analysis of the Finite Element Method. Prentice-Hall: Englewood Cliffs, NJ, 1973.
[21]Epperson, The American Mathematical Monthly 94 pp 329– (1987)
[22]Farouki, Mathematics of Computation 65 pp 1553– (1996)
[23]Private communication, 2006.
[24]Peña, Mathematics of Computation 66 pp 1555– (1997)
[25]Hughes, Computer Methods in Applied Mechanics and Engineering 193 pp 4135– (2005)
[26]Belytschko, International Journal for Numerical Methods in Engineering 37 pp 229– (1994)
[27]Liu, International Journal for Numerical Methods in Engineering 20 pp 1081– (1995)
[28]Belytschko, Computer Methods in Applied Mechanics and Engineering 139 pp 3– (1996)
[29]Li, Applied Mechanics Review 55 pp 1– (2002)
[30], , . Meshfree methods. In Encyclopedia of Computational Mechanics, , (eds), vol. 1. Wiley: Chichester, 2004; 279–309 (Chapter 10).
[31]. Classification and overview of meshfree methods. Technical Report Informatikbericht-Nr. 2003-03, Institute of Scientific Computing, Technical University Braunschweig, Braunschweig, Germany, 2004.
[32]. The Meshless Local Petrov–Galerkin (MLPG) Method. Tech Science Press: Encino, CA, 2002. ·Zbl 1012.65116
[33]Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press: Boca Raton, FL, 2003. ·Zbl 1031.74001
[34]. Meshfree Particle Methods. Springer: New York, NY, 2004. ·Zbl 1073.65002
[35]Dolbow, Archives of Computational Methods in Engineering 5 pp 207– (1998)
[36]Du, Computer Methods in Applied Mechanics and Engineering 191 pp 1349– (2002)
[37]Kansa, Computers and Mathematics with Applications 19 pp 127– (1990) ·Zbl 0692.76003
[38]Kansa, Computers and Mathematics with Applications 19 pp 147– (1990) ·Zbl 0692.76003
[39]A Rational Finite Element Basis. Academic Press: New York, NY, 1975. ·Zbl 0322.65001
[40]Sukumar, Archives of Computational Methods in Engineering 13 pp 129– (2006)
[41]Barycentric coordinates for arbitrary polygons in the plane. Technical Report IfI-05-05, Department of Informatics, Clausthal University of Technology, February 2005.
[42]Cueto, Archives of Computational Methods in Engineering 10 pp 307– (2003)
[43]Rashid, International Journal for Numerical Methods in Engineering 67 pp 226– (2006)
[44]Data Analysis: A Bayesian Tutorial. Oxford University Press: Oxford, 1996. ·Zbl 0884.62033
[45]Maximum-Entropy Models in Science and Engineering. (1st rev. edn). Wiley: New Delhi, India, 1993.
[46]Theory of Probability. Clarendon Press: Oxford, 1939.
[47]Cox, American Journal of Physics 14 pp 1– (1946)
[48]. Elements of Information Theory. Wiley: New York, NY, 1991. ·Zbl 0762.94001 ·doi:10.1002/0471200611
[49]Jaynes, Physical Review 108 pp 171– (1957)
[50]Probability Theory: The Logic of Science. Cambridge University Press: Cambridge, U.K., 2003. ·Zbl 1045.62001 ·doi:10.1017/CBO9780511790423
[51]The relation of Bayesian and maximum entropy methods. In Maximum-Entropy and Bayesian Methods in Science and Engineering, Erickson GJ, Smith CR (eds), Foundations, vol. 1. Dordrecht, The Netherlands, 1988; 25–29.
[52]Bayesian inductive inference and maximum entropy. In Maximum-Entropy and Bayesian Methods in Science and Engineering, Erickson GJ, Smith CR (eds), Foundations, vol. 1. Dordrecht, The Netherlands, 1988; 53–74.
[53]Mathematical Foundations of Information Theory. Dover: New York, NY, 1957. ·Zbl 0088.10404
[54](ed.). E. T. Jaynes: Paper on Probability, Statistics and Statistical Physics. Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989.
[55]Mead, Journal of Mathematical Physics 25 pp 2404– (1984)
[56]Kullback, Annals of Mathematical Statistics 22 pp 79– (1951)
[57]Information and Exponential Families in Statistical Theory. Wiley: New York, NY, 1978. ·Zbl 0387.62011
[58]. Methods of Information Geometry. Oxford University Press: New York, NY, 2000.
[59]Agmon, Journal of Computational Physics 30 pp 250– (1979)
[60]. Convex Optimization. Cambridge University Press: Cambridge, U.K., 2004. ·Zbl 1058.90049 ·doi:10.1017/CBO9780511804441
[61]An information theory approach to supervised learning. Ph.D. Thesis, Department of Electrical Engineering, Stanford University, Palo Alto, CA, U.S.A., March 2003.
[62]PDCO: primal-dual method for convex objectives. Available at http://www.stanford.edu/group/SOL/software/pdco.html, Department of Management Science and Engineering, Stanford University, Stanford, CA, 2002.
[63]. Numerical Analysis (10th edn). Thomson/Brooks/Cole: Belmont, CA, 2005.
[64]Rajan, Discrete and Computational Geometry 12 pp 189– (1994)
[65]Krongauz, Computer Methods in Applied Mechanics and Engineering 146 pp 371– (1997)
[66]Babuška, International Journal for Numerical Methods in Engineering 40 pp 727– (1997)
[67]. Deriving the continuity of maximum-entropy basis functions via variational analysis. 2006, submitted.
[68]. Variational Analysis (2nd edn). Springer: Berlin, 2004.
[69]Penrose, Proceedings of the Cambridge Philosophical Society 51 pp 406– (1955)
[70]A two-dimensional interpolation function for irregularly spaced points. ACM National Conference, 1968; 517–524.
[71]Theory of R-functions and applications: a primer. Technical Report CPA88-3, Cornell Programmable Automation, Sibley School of Mechanical Engineering, Ithaca, NY 14853, 1991.
[72]Rvachev, Computational Mechanics 25 pp 305– (2000)
[73]The axioms of maximum entropy. In Maximum-Entropy and Bayesian Methods in Science and Engineering, Erickson GJ, Smith CR (eds), Foundations, vol. 1. Dordrecht, The Netherlands, 1988; 173–187.
[74]. The MEMSYS5 users’ manual. Technical Report, Maximum Entropy Data Consultants Ltd., Suffolk, U.K., 1990.
[75]Hobson, Monthly Notices of the Royal Astronomical Society 298 pp 905– (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp