[1] | Meyer, Journal of Graphics Tools 7 pp 13– (2002) ·Zbl 1024.68109 ·doi:10.1080/10867651.2002.10487551 |
[2] | Floater, Computer Aided Geometric Design 20 pp 19– (2003) |
[3] | . Surface parameterization: a tutorial and survey. In Advances in Multiresolution for Geometric Modelling, , (eds), Mathematics and Visualization. Springer: Berlin, Heidelberg, 2005; 157–186. ·Zbl 1065.65030 |
[4] | Sukumar, International Journal for Numerical Methods in Engineering 61 pp 2045– (2004) |
[5] | Lancaster, Mathematics of Computation 37 pp 141– (1981) |
[6] | Sibson, Mathematical Proceedings of the Cambridge Philosophical Society 87 pp 151– (1980) |
[7] | Christ, Nuclear Physics B 210 pp 337– (1982) |
[8] | Hardy, Journal of Geophysical Research 76 pp 1905– (1971) |
[9] | Radial Basis Functions: Theory and Implementations. Cambridge University Press: Cambridge, U.K., 2003. ·Zbl 1038.41001 ·doi:10.1017/CBO9780511543241 |
[10] | Scattered Data Approximation. Cambridge University Press: Cambridge, U.K., 2005. ·Zbl 1075.65021 |
[11] | Sukumar, International Journal for Numerical Methods in Engineering 61 pp 2159– (2004) |
[12] | Arroyo, International Journal for Numerical Methods in Engineering 65 pp 2167– (2006) |
[13] | Sukumar, AIP Conference Proceedings 803 pp 337– (2005) |
[14] | Shannon, The Bell Systems Technical Journal 27 pp 379– (1948) ·Zbl 1154.94303 ·doi:10.1002/j.1538-7305.1948.tb01338.x |
[15] | Jaynes, Physical Review 106 pp 620– (1957) |
[16] | Information theory and statistical mechanics. In Statistical Physics: The 1962 Brandeis Lectures, (ed.). W. A. Benjamin: New York, 1963; 181–218. |
[17] | Information Theory and Statistics. Wiley: New York, NY, 1959. ·Zbl 0088.10406 |
[18] | Shore, IEEE Transactions on Information Theory 26 pp 26– (1980) |
[19] | Convex Analysis. Princeton University Press: Princeton, NJ, 1970. ·Zbl 0932.90001 ·doi:10.1515/9781400873173 |
[20] | . An Analysis of the Finite Element Method. Prentice-Hall: Englewood Cliffs, NJ, 1973. |
[21] | Epperson, The American Mathematical Monthly 94 pp 329– (1987) |
[22] | Farouki, Mathematics of Computation 65 pp 1553– (1996) |
[23] | Private communication, 2006. |
[24] | Peña, Mathematics of Computation 66 pp 1555– (1997) |
[25] | Hughes, Computer Methods in Applied Mechanics and Engineering 193 pp 4135– (2005) |
[26] | Belytschko, International Journal for Numerical Methods in Engineering 37 pp 229– (1994) |
[27] | Liu, International Journal for Numerical Methods in Engineering 20 pp 1081– (1995) |
[28] | Belytschko, Computer Methods in Applied Mechanics and Engineering 139 pp 3– (1996) |
[29] | Li, Applied Mechanics Review 55 pp 1– (2002) |
[30] | , , . Meshfree methods. In Encyclopedia of Computational Mechanics, , (eds), vol. 1. Wiley: Chichester, 2004; 279–309 (Chapter 10). |
[31] | . Classification and overview of meshfree methods. Technical Report Informatikbericht-Nr. 2003-03, Institute of Scientific Computing, Technical University Braunschweig, Braunschweig, Germany, 2004. |
[32] | . The Meshless Local Petrov–Galerkin (MLPG) Method. Tech Science Press: Encino, CA, 2002. ·Zbl 1012.65116 |
[33] | Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press: Boca Raton, FL, 2003. ·Zbl 1031.74001 |
[34] | . Meshfree Particle Methods. Springer: New York, NY, 2004. ·Zbl 1073.65002 |
[35] | Dolbow, Archives of Computational Methods in Engineering 5 pp 207– (1998) |
[36] | Du, Computer Methods in Applied Mechanics and Engineering 191 pp 1349– (2002) |
[37] | Kansa, Computers and Mathematics with Applications 19 pp 127– (1990) ·Zbl 0692.76003 |
[38] | Kansa, Computers and Mathematics with Applications 19 pp 147– (1990) ·Zbl 0692.76003 |
[39] | A Rational Finite Element Basis. Academic Press: New York, NY, 1975. ·Zbl 0322.65001 |
[40] | Sukumar, Archives of Computational Methods in Engineering 13 pp 129– (2006) |
[41] | Barycentric coordinates for arbitrary polygons in the plane. Technical Report IfI-05-05, Department of Informatics, Clausthal University of Technology, February 2005. |
[42] | Cueto, Archives of Computational Methods in Engineering 10 pp 307– (2003) |
[43] | Rashid, International Journal for Numerical Methods in Engineering 67 pp 226– (2006) |
[44] | Data Analysis: A Bayesian Tutorial. Oxford University Press: Oxford, 1996. ·Zbl 0884.62033 |
[45] | Maximum-Entropy Models in Science and Engineering. (1st rev. edn). Wiley: New Delhi, India, 1993. |
[46] | Theory of Probability. Clarendon Press: Oxford, 1939. |
[47] | Cox, American Journal of Physics 14 pp 1– (1946) |
[48] | . Elements of Information Theory. Wiley: New York, NY, 1991. ·Zbl 0762.94001 ·doi:10.1002/0471200611 |
[49] | Jaynes, Physical Review 108 pp 171– (1957) |
[50] | Probability Theory: The Logic of Science. Cambridge University Press: Cambridge, U.K., 2003. ·Zbl 1045.62001 ·doi:10.1017/CBO9780511790423 |
[51] | The relation of Bayesian and maximum entropy methods. In Maximum-Entropy and Bayesian Methods in Science and Engineering, Erickson GJ, Smith CR (eds), Foundations, vol. 1. Dordrecht, The Netherlands, 1988; 25–29. |
[52] | Bayesian inductive inference and maximum entropy. In Maximum-Entropy and Bayesian Methods in Science and Engineering, Erickson GJ, Smith CR (eds), Foundations, vol. 1. Dordrecht, The Netherlands, 1988; 53–74. |
[53] | Mathematical Foundations of Information Theory. Dover: New York, NY, 1957. ·Zbl 0088.10404 |
[54] | (ed.). E. T. Jaynes: Paper on Probability, Statistics and Statistical Physics. Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989. |
[55] | Mead, Journal of Mathematical Physics 25 pp 2404– (1984) |
[56] | Kullback, Annals of Mathematical Statistics 22 pp 79– (1951) |
[57] | Information and Exponential Families in Statistical Theory. Wiley: New York, NY, 1978. ·Zbl 0387.62011 |
[58] | . Methods of Information Geometry. Oxford University Press: New York, NY, 2000. |
[59] | Agmon, Journal of Computational Physics 30 pp 250– (1979) |
[60] | . Convex Optimization. Cambridge University Press: Cambridge, U.K., 2004. ·Zbl 1058.90049 ·doi:10.1017/CBO9780511804441 |
[61] | An information theory approach to supervised learning. Ph.D. Thesis, Department of Electrical Engineering, Stanford University, Palo Alto, CA, U.S.A., March 2003. |
[62] | PDCO: primal-dual method for convex objectives. Available at http://www.stanford.edu/group/SOL/software/pdco.html, Department of Management Science and Engineering, Stanford University, Stanford, CA, 2002. |
[63] | . Numerical Analysis (10th edn). Thomson/Brooks/Cole: Belmont, CA, 2005. |
[64] | Rajan, Discrete and Computational Geometry 12 pp 189– (1994) |
[65] | Krongauz, Computer Methods in Applied Mechanics and Engineering 146 pp 371– (1997) |
[66] | Babuška, International Journal for Numerical Methods in Engineering 40 pp 727– (1997) |
[67] | . Deriving the continuity of maximum-entropy basis functions via variational analysis. 2006, submitted. |
[68] | . Variational Analysis (2nd edn). Springer: Berlin, 2004. |
[69] | Penrose, Proceedings of the Cambridge Philosophical Society 51 pp 406– (1955) |
[70] | A two-dimensional interpolation function for irregularly spaced points. ACM National Conference, 1968; 517–524. |
[71] | Theory of R-functions and applications: a primer. Technical Report CPA88-3, Cornell Programmable Automation, Sibley School of Mechanical Engineering, Ithaca, NY 14853, 1991. |
[72] | Rvachev, Computational Mechanics 25 pp 305– (2000) |
[73] | The axioms of maximum entropy. In Maximum-Entropy and Bayesian Methods in Science and Engineering, Erickson GJ, Smith CR (eds), Foundations, vol. 1. Dordrecht, The Netherlands, 1988; 173–187. |
[74] | . The MEMSYS5 users’ manual. Technical Report, Maximum Entropy Data Consultants Ltd., Suffolk, U.K., 1990. |
[75] | Hobson, Monthly Notices of the Royal Astronomical Society 298 pp 905– (1998) |