[1] | L. Ambrosio, ”Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces,” Adv. Math., vol. 159, iss. 1, pp. 51-67, 2001. ·Zbl 1002.28004 ·doi:10.1006/aima.2000.1963 |
[2] | L. Ambrosio, ”Fine properties of sets of finite perimeter in doubling metric measure spaces,” Set-Valued Anal., vol. 10, iss. 2-3, pp. 111-128, 2002. ·Zbl 1037.28002 ·doi:10.1023/A:1016548402502 |
[3] | L. Ambrosio, M. Miranda Jr., and D. Pallara, ”Special functions of bounded variation in doubling metric measure spaces,” in Calculus of Variations: Topics From the Mathematical Heritage of E. De Giorgi, Dept. Math., Seconda Univ. Napoli, Caserta, 2004, pp. 1-45. ·Zbl 1089.49039 |
[4] | N. Aronszajn, ”Differentiability of Lipschitzian mappings between Banach spaces,” Studia Math., vol. 57, iss. 2, pp. 147-190, 1976. ·Zbl 0342.46034 |
[5] | Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, Providence, RI: Amer. Math. Soc., 2000. ·Zbl 0946.46002 |
[6] | M. Bourdon and H. Pajot, ”Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings,” Proc. Amer. Math. Soc., vol. 127, iss. 8, pp. 2315-2324, 1999. ·Zbl 0924.30030 ·doi:10.1090/S0002-9939-99-04901-1 |
[7] | J. Cheeger, ”Differentiability of Lipschitz functions on metric measure spaces,” Geom. Funct. Anal., vol. 9, iss. 3, pp. 428-517, 1999. ·Zbl 0942.58018 ·doi:10.1007/s000390050094 |
[8] | J. Cheeger and B. Kleiner, ”On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces,” in Inspired by S. S. Chern, World Sci. Publ., Hackensack, NJ, 2006, pp. 129-152. ·Zbl 1139.58004 |
[9] | J. Cheeger and B. Kleiner, ”Generalized differential and bi-Lipschitz nonembedding in \(L^1\),” C. R. Math. Acad. Sci. Paris, vol. 343, iss. 5, pp. 297-301, 2006. ·Zbl 1100.58004 ·doi:10.1016/j.crma.2006.07.001 |
[10] | J. Cheeger and B. Kleiner, ”On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces,” in Inspired by S. S. Chern, World Sci. Publ., Hackensack, NJ, 2006, pp. 129-152. ·Zbl 1139.58004 |
[11] | J. Cheeger and B. Kleiner, ”Characterization of the Radon-Nikodym Property in terms of inverse limits,” in Géométrie Différentielle, Physique Mathématique, Mathématiques et Société pour Célébrer les 60 ans de Jean-Pierre Bourguignon, Séminaires et Congrès, Société Mathématique de France, 2008. ·Zbl 1191.46016 |
[12] | Cheeger, Jeff and Kleiner, Bruce, Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon-Nikodym Property, 2008. ·Zbl 1200.58007 ·doi:10.1007/s00039-009-0030-6 |
[13] | Cheeger, Jeff and Kleiner, Bruce, Metric differentiation, monotonicity and Lipschitz maps to \(L^1\), 2008. ·Zbl 1214.46013 ·doi:10.1007/s00222-010-0264-9 |
[14] | Cheeger, J. and Kleiner, B. and A. Naor, Quantitative bounds on the rate of central collapse for BV maps from the Heisenberg group to \(L^1\). ·Zbl 1247.46020 |
[15] | E. De Giorgi, ”Nuovi teoremi relativi alle misure \((r-1)\)-dimensionali in uno spazio ad \(r\) dimensioni,” Ricerche Mat., vol. 4, pp. 95-113, 1955. ·Zbl 0066.29903 |
[16] | M. M. Deza and M. Laurent, Geometry of Cuts and Metrics, New York: Springer-Verlag, 1997. ·Zbl 0885.52001 |
[17] | B. Franchi, R. Serapioni, and F. Serra Cassano, ”Rectifiability and perimeter in the Heisenberg group,” Math. Ann., vol. 321, iss. 3, pp. 479-531, 2001. ·Zbl 1057.49032 ·doi:10.1007/s002080100228 |
[18] | B. Franchi, R. Serapioni, and F. Serra Cassano, ”On the structure of finite perimeter sets in step 2 Carnot groups,” J. Geom. Anal., vol. 13, iss. 3, pp. 421-466, 2003. ·Zbl 1064.49033 ·doi:10.1007/BF02922053 |
[19] | E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Boston: Birkhäuser, 1984. ·Zbl 0545.49018 |
[20] | M. Gromov, ”Carnot-Carathéodory spaces seen from within,” in Sub-Riemannian Geometry, Boston: Birkhäuser, 1996, pp. 79-323. ·Zbl 0864.53025 |
[21] | J. Heinonen and P. Koskela, ”From local to global in quasiconformal structures,” Proc. Nat. Acad. Sci. U.S.A., vol. 93, iss. 2, pp. 554-556, 1996. ·Zbl 0842.30016 ·doi:10.1073/pnas.93.2.554 |
[22] | J. Heinonen, P. Koskela, N. Shanmugalingam, and J. T. Tyson, ”Sobolev classes of Banach space-valued functions and quasiconformal mappings,” J. Anal. Math., vol. 85, pp. 87-139, 2001. ·Zbl 1013.46023 ·doi:10.1007/BF02788076 |
[23] | S. Heinrich and P. Mankiewicz, ”Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces,” Studia Math., vol. 73, iss. 3, pp. 225-251, 1982. ·Zbl 0506.46008 |
[24] | S. Kakutani, ”Mean ergodic theorem in abstract \((L)\)-spaces,” Proc. Imp. Acad., Tokyo, vol. 15, pp. 121-123, 1939. ·Zbl 0021.41304 ·doi:10.3792/pia/1195579404 |
[25] | B. Kirchheim, ”Rectifiable metric spaces: local structure and regularity of the Hausdorff measure,” Proc. Amer. Math. Soc., vol. 121, iss. 1, pp. 113-123, 1994. ·Zbl 0806.28004 ·doi:10.2307/2160371 |
[26] | S. Khot and N. Vishnoi, ”The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into \(\ell_1\),” in 46th Annual Symposium on Foundations of Computer Science, Los Alamitos: IEE Computer Society, 2005, pp. 53-62. ·Zbl 1321.68316 ·doi:10.1145/2629614 |
[27] | T. J. Laakso, ”Ahlfors \(Q\)-regular spaces with arbitrary \(Q>1\) admitting weak Poincaré inequality,” Geom. Funct. Anal., vol. 10, iss. 1, pp. 111-123, 2000. ·Zbl 0962.30006 ·doi:10.1007/s000390050003 |
[28] | Lee, J. R. and Naor, A., \(L^p\) metrics on the Heisenberg group and the Goemans-Linial conjecture, 2006. |
[29] | J. Lindenstrauss and D. Preiss, ”Fréchet differentiability of Lipschitz functions (a survey),” in Recent Progress in Functional Analysis (Valencia, 2000), Amsterdam: North-Holland, 2001, pp. 19-42. ·Zbl 1037.46043 |
[30] | M. Miranda Jr., ”Functions of bounded variation on “good” metric spaces,” J. Math. Pures Appl., vol. 82, iss. 8, pp. 975-1004, 2003. ·Zbl 1109.46030 ·doi:10.1016/S0021-7824(03)00036-9 |
[31] | P. Pansu, ”Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un,” Ann. of Math., vol. 129, iss. 1, pp. 1-60, 1989. ·Zbl 0678.53042 ·doi:10.2307/1971484 |
[32] | S. D. Pauls, ”The large scale geometry of nilpotent Lie groups,” Comm. Anal. Geom., vol. 9, iss. 5, pp. 951-982, 2001. ·Zbl 1005.53033 |
[33] | S. Semmes, ”On the nonexistence of bi-Lipschitz parameterizations and geometric problems about \(A_\infty\)-weights,” Rev. Mat. Iberoamericana, vol. 12, iss. 2, pp. 337-410, 1996. ·Zbl 0858.46017 ·doi:10.4171/RMI/201 |
[34] | W. P. Ziemer, Weakly Differentiable Functions, New York: Springer-Verlag, 1989. ·Zbl 0692.46022 ·doi:10.1007/978-1-4612-1015-3 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.