Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Large deviations analysis for distributed algorithms in an ergodic Markovian environment.(English)Zbl 1186.60021

This paper deals with a large deviations analysis of deadlock phenomena occurring in distributed systems sharing common resources. In this model transition probabilities of resource allocation and deallocation are time and space dependent.
The organization of this paper is as follows: the authors discuss probabilistic model in Sect. 2. In Sect. 3 they prove a Large Deviations Principle. Deadlock phenomenon analysis is done rigorously with much details in Sect. 4. Then they illustrate with the two-stacks model and show an example where the system has a stable attractor which is a limit cycle.

MSC:

60F10 Large deviations
60J99 Markov processes

Cite

References:

[1]Atar, R., Dupuis, P.: Large deviations and queueing networks: methods for rate function identification. Stoch. Process. Appl. 84, 255–296 (1999) ·Zbl 0996.60036 ·doi:10.1016/S0304-4149(99)00051-4
[2]Azencott, R., Ruget, G.: Mélanges d’équations différentielles et grands écarts à la loi des grands nombres. Z. Wahrscheinlichkeitstheor. Verw. Geb. 38, 1–54 (1977) ·Zbl 0372.60082 ·doi:10.1007/BF00534169
[3]Azencott, R.: Grandes déviations et applications. In: Eighth Saint Flour Probability Summer School–1978. Lecture Notes in Math., vol. 774, pp. 1–176. Springer, Berlin (1980)
[4]Baldi, P.: Large deviations and stochastic homogenization. Ann. Mat. Pura Appl. 151, 161–177 (1988) ·Zbl 0654.60024 ·doi:10.1007/BF01762793
[5]Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser Boston, Boston (1997) ·Zbl 0890.49011
[6]Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi. Springer, Paris (1994) ·Zbl 0819.35002
[7]Capuzzo-Dolcetta, I., Lions, P.-L.: Hamilton-Jacobi equations with state constraints. Trans. Am. Math. Soc. 318, 643–683 (1990) ·Zbl 0702.49019 ·doi:10.2307/2001324
[8]Comets, F., Delarue, F., Schott, R.: Distributed algorithms in an ergodic Markovian environment. Random Struct. Algorithms 30, 131–167 (2007) ·Zbl 1178.68663 ·doi:10.1002/rsa.20154
[9]Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Applications of Mathematics, vol. 38. Springer, New York (1998) ·Zbl 0896.60013
[10]Dupuis, P.: Large deviations analysis of reflected diffusions and constrained stochastic approximation algorithms in convex sets. Stochastics 21, 63–96 (1987) ·Zbl 0614.60023
[11]Dupuis, P.: Large deviations analysis of some recursive algorithms with state dependent noise. Ann. Probab. 16, 1509–1536 (1988) ·Zbl 0661.60045 ·doi:10.1214/aop/1176991581
[12]Dupuis, P., Ellis, R.S.: The large deviations principle for a general class of queueing systems I. Trans. Am. Math. Soc. 347, 2689–2751 (1995) ·Zbl 0869.60022 ·doi:10.2307/2154753
[13]Dupuis, P., Ramanan, K.: A time-reversed representation for the tail probabilities of stationary reflected Brownian motion. Stoch. Process. Appl. 98, 253–287 (2002) ·Zbl 1059.60030 ·doi:10.1016/S0304-4149(01)00151-X
[14]Feng, J., Kurtz, T.: Large Deviations for Stochastic Processes. Mathematical Surveys and Monographs, vol. 131. American Mathematical Society, Providence (2006) ·Zbl 1113.60002
[15]Flajolet, P.: The evolution of two stacks in bounded space and random walks in a triangle. In: Proceedings of FCT’86. LNCS, vol. 233, pp. 325–340. Springer, Berlin (1986) ·Zbl 0602.68029
[16]Freidlin, M., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Grundlehren der Mathematischen Wissenschaften, vol. 260. Springer, New York (1984) ·Zbl 0522.60055
[17]Guillotin-Plantard, N., Schott, R.: Distributed algorithms with dynamic random transitions. Random Struct. Algorithms 21, 371–396 (2002) ·Zbl 1057.68133 ·doi:10.1002/rsa.10060
[18]Guillotin-Plantard, N., Schott, R.: Dynamic Random Walks. Theory and Applications. Elsevier, Amsterdam (2006) ·Zbl 1124.60086
[19]Gulinsky, O., Veretennikov, A.: Large Deviations for Discrete-Time Processes with Averaging. VSP, Utrecht (1993) ·Zbl 0838.60028
[20]Ignatiouk-Robert, I.: Large deviations for processes with discontinuous statistics. Ann. Probab. 33, 1479–1508 (2005) ·Zbl 1087.60024 ·doi:10.1214/009117905000000189
[21]Ignatiouk-Robert, I.: Sample path large deviations and convergence parameters. Ann. Appl. Probab. 11, 1292–1329 (2001) ·Zbl 1025.60011 ·doi:10.1214/aoap/1015345404
[22]Knuth, D.E.: The Art of Computer Programming, vol. 1. Addison–Wesley, Reading (1973) ·Zbl 0191.17903
[23]Lions, P.-L., Sznitman, A.-S.: Stochastic differential equations with reflecting boundary conditions. Commun. Pure Appl. Math. 37, 511–537 (1984) ·Zbl 0598.60060 ·doi:10.1002/cpa.3160370408
[24]Lions, P.-L.: Neumann type boundary conditions for Hamilton-Jacobi equations. Duke Math. J. 52, 793–820 (1985) ·Zbl 0599.35025 ·doi:10.1215/S0012-7094-85-05242-1
[25]Louchard, G.: Some distributed algorithms revisited. Commun. Stat. Stoch. Models 4, 563–586 (1995) ·Zbl 0840.90057 ·doi:10.1080/15326349508807361
[26]Louchard, G., Schott, R.: Probabilistic analysis of some distributed algorithms. Random Struct. Algorithms 2, 151–186 (1991) ·Zbl 0732.68055 ·doi:10.1002/rsa.3240020203
[27]Louchard, G., Schott, R., Tolley, M., Zimmermann, P.: Random walks, heat equations and distributed algorithms. Comput. Appl. Math. 53, 243–274 (1994) ·Zbl 0820.68052 ·doi:10.1016/0377-0427(94)90048-5
[28]Maier, R.: Colliding stacks: a large deviations analysis. Random Struct. Algorithms 2, 379–420 (1991) ·Zbl 0737.60097 ·doi:10.1002/rsa.3240020404
[29]Olivieri, E., Vares, M.E.: Large Deviations and Metastability. Encyclopedia of Mathematics and its Applications, vol. 100. Cambridge University Press, Cambridge (2005)
[30]Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991) ·Zbl 0722.60001
[31]Yao, A.: An analysis of a memory allocation scheme for implementing stacks. SIAM J. Comput. 10, 398–403 (1981) ·Zbl 0457.68023 ·doi:10.1137/0210029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp