[1] | Atar, R., Dupuis, P.: Large deviations and queueing networks: methods for rate function identification. Stoch. Process. Appl. 84, 255–296 (1999) ·Zbl 0996.60036 ·doi:10.1016/S0304-4149(99)00051-4 |
[2] | Azencott, R., Ruget, G.: Mélanges d’équations différentielles et grands écarts à la loi des grands nombres. Z. Wahrscheinlichkeitstheor. Verw. Geb. 38, 1–54 (1977) ·Zbl 0372.60082 ·doi:10.1007/BF00534169 |
[3] | Azencott, R.: Grandes déviations et applications. In: Eighth Saint Flour Probability Summer School–1978. Lecture Notes in Math., vol. 774, pp. 1–176. Springer, Berlin (1980) |
[4] | Baldi, P.: Large deviations and stochastic homogenization. Ann. Mat. Pura Appl. 151, 161–177 (1988) ·Zbl 0654.60024 ·doi:10.1007/BF01762793 |
[5] | Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser Boston, Boston (1997) ·Zbl 0890.49011 |
[6] | Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi. Springer, Paris (1994) ·Zbl 0819.35002 |
[7] | Capuzzo-Dolcetta, I., Lions, P.-L.: Hamilton-Jacobi equations with state constraints. Trans. Am. Math. Soc. 318, 643–683 (1990) ·Zbl 0702.49019 ·doi:10.2307/2001324 |
[8] | Comets, F., Delarue, F., Schott, R.: Distributed algorithms in an ergodic Markovian environment. Random Struct. Algorithms 30, 131–167 (2007) ·Zbl 1178.68663 ·doi:10.1002/rsa.20154 |
[9] | Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Applications of Mathematics, vol. 38. Springer, New York (1998) ·Zbl 0896.60013 |
[10] | Dupuis, P.: Large deviations analysis of reflected diffusions and constrained stochastic approximation algorithms in convex sets. Stochastics 21, 63–96 (1987) ·Zbl 0614.60023 |
[11] | Dupuis, P.: Large deviations analysis of some recursive algorithms with state dependent noise. Ann. Probab. 16, 1509–1536 (1988) ·Zbl 0661.60045 ·doi:10.1214/aop/1176991581 |
[12] | Dupuis, P., Ellis, R.S.: The large deviations principle for a general class of queueing systems I. Trans. Am. Math. Soc. 347, 2689–2751 (1995) ·Zbl 0869.60022 ·doi:10.2307/2154753 |
[13] | Dupuis, P., Ramanan, K.: A time-reversed representation for the tail probabilities of stationary reflected Brownian motion. Stoch. Process. Appl. 98, 253–287 (2002) ·Zbl 1059.60030 ·doi:10.1016/S0304-4149(01)00151-X |
[14] | Feng, J., Kurtz, T.: Large Deviations for Stochastic Processes. Mathematical Surveys and Monographs, vol. 131. American Mathematical Society, Providence (2006) ·Zbl 1113.60002 |
[15] | Flajolet, P.: The evolution of two stacks in bounded space and random walks in a triangle. In: Proceedings of FCT’86. LNCS, vol. 233, pp. 325–340. Springer, Berlin (1986) ·Zbl 0602.68029 |
[16] | Freidlin, M., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Grundlehren der Mathematischen Wissenschaften, vol. 260. Springer, New York (1984) ·Zbl 0522.60055 |
[17] | Guillotin-Plantard, N., Schott, R.: Distributed algorithms with dynamic random transitions. Random Struct. Algorithms 21, 371–396 (2002) ·Zbl 1057.68133 ·doi:10.1002/rsa.10060 |
[18] | Guillotin-Plantard, N., Schott, R.: Dynamic Random Walks. Theory and Applications. Elsevier, Amsterdam (2006) ·Zbl 1124.60086 |
[19] | Gulinsky, O., Veretennikov, A.: Large Deviations for Discrete-Time Processes with Averaging. VSP, Utrecht (1993) ·Zbl 0838.60028 |
[20] | Ignatiouk-Robert, I.: Large deviations for processes with discontinuous statistics. Ann. Probab. 33, 1479–1508 (2005) ·Zbl 1087.60024 ·doi:10.1214/009117905000000189 |
[21] | Ignatiouk-Robert, I.: Sample path large deviations and convergence parameters. Ann. Appl. Probab. 11, 1292–1329 (2001) ·Zbl 1025.60011 ·doi:10.1214/aoap/1015345404 |
[22] | Knuth, D.E.: The Art of Computer Programming, vol. 1. Addison–Wesley, Reading (1973) ·Zbl 0191.17903 |
[23] | Lions, P.-L., Sznitman, A.-S.: Stochastic differential equations with reflecting boundary conditions. Commun. Pure Appl. Math. 37, 511–537 (1984) ·Zbl 0598.60060 ·doi:10.1002/cpa.3160370408 |
[24] | Lions, P.-L.: Neumann type boundary conditions for Hamilton-Jacobi equations. Duke Math. J. 52, 793–820 (1985) ·Zbl 0599.35025 ·doi:10.1215/S0012-7094-85-05242-1 |
[25] | Louchard, G.: Some distributed algorithms revisited. Commun. Stat. Stoch. Models 4, 563–586 (1995) ·Zbl 0840.90057 ·doi:10.1080/15326349508807361 |
[26] | Louchard, G., Schott, R.: Probabilistic analysis of some distributed algorithms. Random Struct. Algorithms 2, 151–186 (1991) ·Zbl 0732.68055 ·doi:10.1002/rsa.3240020203 |
[27] | Louchard, G., Schott, R., Tolley, M., Zimmermann, P.: Random walks, heat equations and distributed algorithms. Comput. Appl. Math. 53, 243–274 (1994) ·Zbl 0820.68052 ·doi:10.1016/0377-0427(94)90048-5 |
[28] | Maier, R.: Colliding stacks: a large deviations analysis. Random Struct. Algorithms 2, 379–420 (1991) ·Zbl 0737.60097 ·doi:10.1002/rsa.3240020404 |
[29] | Olivieri, E., Vares, M.E.: Large Deviations and Metastability. Encyclopedia of Mathematics and its Applications, vol. 100. Cambridge University Press, Cambridge (2005) |
[30] | Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991) ·Zbl 0722.60001 |
[31] | Yao, A.: An analysis of a memory allocation scheme for implementing stacks. SIAM J. Comput. 10, 398–403 (1981) ·Zbl 0457.68023 ·doi:10.1137/0210029 |