Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Bounds for modular \(L\)-functions in the level aspect.(English)Zbl 1185.11034

If \(f\) is a cusp form (holomorphic or Maass) on \(\text{GL}(2)\) of level \(q\) and \(L(f,s)\) denotes its \(L\)-function, then an inequality of the form \[L(f,s)~\ll~ q^{\frac{1}{4}+\epsilon}\] on \(\text{Re}\,s = 1/2\) is the so-called “convexity bound” in this context. This is the trivial bound provided by the standard Phragmén-Lindelöf convexity principle.
For many important applications, however, one requires a better subconvex bound on \(L(f,s)\),i.e., one that breaks the convexity bound by some positive power of \(q\) (subconvexity in the level aspect). Duke-Friedlander-Iwaniec proved a subconvex bound for general automoprhic forms on \(\text{GL}(2)\). If \(f\) is primitive with a primitive nebentypus and archimedean parameter \(t_{f}\), then they proved that \[ L(f,s) \ll (|s|+|t_{f}|)^{\frac{19}{2}} q^{\frac{1}{4} - \frac{1}{23041}}. \]
This article improves on the Duke-Friedlander-Iwaniec result. The authors prove that if \(f\) is primitive with non-trivial nebentypus, then \[ L(f,s) \ll (|s|+|t_{f}|)^{A} q^{\frac{1}{4} - \frac{1}{1889}}, \] where \(A\) is an absolute constant (which the authors say can probably be arranged to be 2 with some work). Not only does this result improve on the exponent in the Duke-Friedlander-Iwaniec result, it also allows for more general nebentypus, a feature that turns out to play an important role in the applications that the authors present.

MSC:

11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations

Cite

References:

[1]Blomer V., Harcos G. , Hybrid bounds for twisted L -functions, J. reine angew. Math. , in press. ·Zbl 1296.11047
[2]Blomer V. , Harcos G. , Michel P. , A Burgess-like subconvex bound for twisted L -functions (with Appendix 2 by Z. Mao) , Forum Math. 19 ( 2007 ) 61 - 105 . MR 2296066 | Zbl pre05145751 ·Zbl 1168.11014 ·doi:10.1515/FORUM.2007.003
[3]Burgess D.A. , On character sums and L -series. II , Proc. Lond. Math. Soc. 13 ( 1963 ) 524 - 536 . MR 148626 | Zbl 0123.04404 ·Zbl 0123.04404 ·doi:10.1112/plms/s3-13.1.524
[4]Bykovskiĭ V.A. , A trace formula for the scalar product of Hecke series and its applications , translated in, J. Math. Sci (New York) 89 ( 1998 ) 915 - 932 . MR 1433344 | Zbl 0898.11017 ·Zbl 0898.11017
[5]Deshouillers J.-M. , Iwaniec H. , Kloosterman sums and Fourier coefficients of cusp forms , Invent. Math. 70 ( 1982 ) 219 - 288 . MR 684172 | Zbl 0502.10021 ·Zbl 0502.10021 ·doi:10.1007/BF01390728
[6]Duke W. , Hyperbolic distribution problems and half-integral weight Maass forms , Invent. Math. 92 ( 1988 ) 73 - 90 . MR 931205 | Zbl 0628.10029 ·Zbl 0628.10029 ·doi:10.1007/BF01393993
[7]Duke W. , Friedlander J. , Iwaniec H. , A quadratic divisor problem , Invent. Math. 115 ( 1994 ) 209 - 217 . MR 1258903 | Zbl 0791.11049 ·Zbl 0791.11049 ·doi:10.1007/BF01231758
[8]Duke W. , Friedlander J. , Iwaniec H. , Bounds for automorphic L -functions. II , Invent. Math. 115 ( 1994 ) 219 - 239 . MR 1258904 | Zbl 0812.11032 ·Zbl 0812.11032 ·doi:10.1007/BF01231759
[9]Duke W. , Friedlander J. , Iwaniec H. , Representations by the determinant and mean values of L -functions , in: Sieve Methods, Exponential Sums, and Their Applications in Number Theory , Cardiff, 1995 , London Math. Soc. Lecture Note Ser. , vol. 237 , Cambridge Univ. Press , Cambridge , 1997 , pp. 109 - 115 . MR 1635738 | Zbl 0927.11046 ·Zbl 0927.11046
[10]Duke W. , Friedlander J. , Iwaniec H. , Bounds for automorphic L -functions. III , Invent. Math. 143 ( 2001 ) 221 - 248 . MR 1835388 | Zbl 1163.11325 ·Zbl 1163.11325 ·doi:10.1007/s002220000104
[11]Duke W. , Friedlander J. , Iwaniec H. , The subconvexity problem for Artin L -functions , Invent. Math. 149 ( 2002 ) 489 - 577 . MR 1923476 | Zbl 1056.11072 ·Zbl 1056.11072 ·doi:10.1007/s002220200223
[12]Einsiedler M., Lindenstrauss E., Michel P., Venkatesh A. , Distribution of periodic torus orbits and Duke’s theorem for cubic fields, submitted for publication. arXiv ·Zbl 1248.37009
[13]Friedlander J. , Bounds for L -functions , in: Zürich, 1994 , Proc. Int. Congr. Math. , vol. II , Birkhäuser , Basel , 1995 , pp. 363 - 373 . MR 1403937 | Zbl 0843.11040 ·Zbl 0843.11040
[14]Gelbart S. , Jacquet H. , Forms on \({\mathrm{GL}}_{2}\) from the analytic point of view , in: Borel A. , Casselman W. (Eds.), Automorphic Forms, Representations, and L -Functions, Part 1 , Proc. Sympos. Pure Math. , vol. 33 , 1979 , pp. 213 - 251 . MR 546600 | Zbl 0409.22013 ·Zbl 0409.22013
[15]Gradshteyn I.S. , Ryzhik I.M. , Tables of Integrals, Series, and Products , fifth ed. , Academic Press , New York , 1994 . Zbl 0918.65002 ·Zbl 0918.65002
[16]Harcos G. , Uniform approximate functional equation for principal L -functions , Int. Math. Res. Not. ( 2002 ) 923 - 932 , Erratum, Int. Math. Res. Not. ( 2004 ) 659 - 660 . MR 1902296 | Zbl 0998.11026 ·Zbl 0998.11026 ·doi:10.1155/S1073792802111184
[17]Harcos G. , Michel P. , The subconvexity problem for Rankin-Selberg L -functions and equidistribution of Heegner points. II , Invent. Math. 163 ( 2006 ) 581 - 655 . ·Zbl 1111.11027 ·doi:10.1007/s00222-005-0468-6
[18]Heath-Brown D.R. , Hybrid bounds for Dirichlet L -functions. II , Quart. J. Math. Oxford Ser. (2) 31 ( 1980 ) 157 - 167 . MR 576334 | Zbl 0396.10030 ·Zbl 0396.10030 ·doi:10.1093/qmath/31.2.157
[19]Iwaniec H. , Spectral Methods of Automorphic Forms, second ed., Graduate Studies Mathematics, vol. 53 , American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. MR 1942691 | Zbl 1006.11024 ·Zbl 1006.11024
[20]Iwaniec H. , Kowalski E. , Analytic Number Theory , American Mathematical Society Colloquium Publications , vol. 53 , American Mathematical Society , Providence, RI , 2004 . MR 2061214 | Zbl 1059.11001 ·Zbl 1059.11001
[21]Iwaniec H. , Sarnak P. , Perspectives in the analytic theory of L -functions , Geom. Funct. Anal. ( 2000 ) 705 - 741 , Special Volume, Part II. MR 1826269 | Zbl 0996.11036 ·Zbl 0996.11036
[22]Jutila M. , Convolutions of Fourier coefficients of cusp forms , Publ. Inst. Math. (Beograd) (N.S.) 65 ( 79 ) ( 1999 ) 31 - 51 . MR 1717400 | Zbl 1006.11019 ·Zbl 1006.11019
[23]Kim H. , Functoriality for the exterior square of \({\mathrm{GL}}_{4}\) and the symmetric fourth of \(G{L}_{2}\) (with Appendix 1 by D. Ramakrishnan and Appendix 2 by H. Kim and P. Sarnak) , J. Amer. Math. Soc. 16 ( 2003 ) 139 - 183 . MR 1937203 | Zbl 1018.11024 ·Zbl 1018.11024 ·doi:10.1090/S0894-0347-02-00410-1
[24]Kowalski E. , Michel P. , VanderKam J. , Mollification of the fourth moment of automorphic L -functions and arithmetic applications , Invent. Math. 142 ( 2000 ) 95 - 151 . MR 1784797 | Zbl 1054.11026 ·Zbl 1054.11026 ·doi:10.1007/s002220000086
[25]Meurman T. , On the binary additive divisor problem , in: Number Theory , Turku, 1999 , de Gruyter , Berlin , 2001 , pp. 223 - 246 . MR 1822012 | Zbl 0967.11039 ·Zbl 0967.11039
[26]Michel P. , The subconvexity problem for Rankin-Selberg L -functions and equidistribution of Heegner points , Ann. of Math. 160 ( 2004 ) 185 - 236 . ·Zbl 1068.11033 ·doi:10.4007/annals.2004.160.185
[27]Michel P. , Venkatesh A. , Equidistribution, L -functions and ergodic theory: on some problems of Yu. Linnik , in: Madrid, 2006 , Proc. Int. Congr. Math. , vol. II , Eur. Math. Soc. , Zürich , 2006 , pp. 421 - 457 . MR 2275604 | Zbl pre05057405 ·Zbl 1157.11019
[28]Proskurin N.V. , On the general Kloosterman sums, translated in , J. Math. Sci. (New York) 129 ( 2005 ) 3874 - 3889 . MR 2023036 | Zbl 1140.11340 ·Zbl 1140.11340 ·doi:10.1007/s10958-005-0324-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp