37A05 | Dynamical aspects of measure-preserving transformations |
37A30 | Ergodic theorems, spectral theory, Markov operators |
[1] | Athreya J S, Ghosh A and Prasad A, Ultrametric Logarithm Laws I, Discrete and Continuous Dynamical Systems-S 2(2) (2009) 337–348 ·Zbl 1175.37009 ·doi:10.3934/dcdss.2009.2.337 |
[2] | Athreya J S and Margulis G A, Logarithm laws for unipotent flows, I, preprint, arxiv.org/0811.2806 [math.DS] |
[3] | Athreya J S and Margulis G A, Logarithm laws for unipotent flows, II, in preparation ·Zbl 1184.37007 |
[4] | Athreya J S and Minsky Y, in preparation |
[5] | Athreya J S and Ulcigrai C, in preparation |
[6] | Avila A and Forni G, Weak mixing for interval exchange transformations and translation flows, Ann. Math. 165 (2007) 637–664 ·Zbl 1136.37003 ·doi:10.4007/annals.2007.165.637 |
[7] | Boshernitzan M and Chaika J, in preparation |
[8] | Chernov N and Kleinbock D Y, Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math. 122 (2001) 1–27 ·Zbl 0997.37002 ·doi:10.1007/BF02809888 |
[9] | Dolgopyat D, Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc. 356(4) (2004) 1637–1689 (electronic) ·Zbl 1031.37031 ·doi:10.1090/S0002-9947-03-03335-X |
[10] | Fayad B, Mixing in the absence of the shrinking target property, Bull. London Math. Soc. 38(5) (2006) 829–838 ·Zbl 1194.37013 ·doi:10.1112/S0024609306018546 |
[11] | Galotolo S and Kim D, The dynamical Borel-Cantelli lemma and the waiting time problems, preprint, arXiv:math/0610213v2 [math.DS] |
[12] | Gorodnik A and Shah N, Khinchin theorem for integral points on quadratic varieties, preprint, arXiv:math/0804.3530v1 [math.NT] |
[13] | Hedlund G, Fuchsian groups and transitive horocycles, Duke Math. J. 2(3) (1936) 530–542 ·Zbl 0015.10201 ·doi:10.1215/S0012-7094-36-00246-6 |
[14] | Hill B and Velani S, The ergodic theory of shrinking targets, Invent. Math. 119 (1995) 175–198 ·Zbl 0834.28009 ·doi:10.1007/BF01245179 |
[15] | Hersonsky S and Paulin F, Hausdorff dimension of diophantine geodesics in negatively curved manifolds, J. Reine Agnew. Math. 539 (2001) 29–43 ·Zbl 0994.53021 ·doi:10.1515/crll.2001.077 |
[16] | Hersonsky S and Paulin F, A logarithm law for automorphism groups of trees, Arch. Math. (Basel) 88(2) (2007) 97–108 ·Zbl 1160.20020 |
[17] | Hersonsky S and Paulin F, On the almost sure spiraling of geodesics in negatively curved manifolds, preprint, arXiv:0708.3389v2 [math.DG] |
[18] | Katok A and Hasselblatt B, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications 54 (Cambridge University Press) (1995) 822 pp. ·Zbl 0878.58020 |
[19] | Keynes HB and Newton D, A Minimal, Non-Uniquely Ergodic Interval Exchange Transformation, Math. Z. 148 (1976) 101–105 ·Zbl 0308.28014 ·doi:10.1007/BF01214699 |
[20] | Kim D, The shrinking target property of irrational rotations, Nonlinearity 20 (2007) 1637–1643 ·Zbl 1116.37029 ·doi:10.1088/0951-7715/20/7/006 |
[21] | Kleinbock D Y and Margulis G A, Logarithm laws for flows on homogeneous spaces, Invent. Math. 138(3) (1999) 451–494 ·Zbl 0934.22016 ·doi:10.1007/s002220050350 |
[22] | Kurzweil J, On the metric theory of inhomogeneous Diophantine approximations, Studia Math. 15 (1955) 84–112 ·Zbl 0066.03702 |
[23] | Masur H, Interval exchange transformations and measured foliations, Ann. Math. 115 (1982) 169–200 ·Zbl 0497.28012 ·doi:10.2307/1971341 |
[24] | Masur H, Logarithmic lawfor geodesics in moduli space, Mapping class groups and moduli spaces of Riemann surfaces (Gttingen, 1991/Seattle, WA, 1991), 229–245, Contemp. Math., 150, Amer. Math. Soc. (RI: Providence) (1993) |
[25] | Maucourant F, Dynamical Borel-Cantelli lemma for hyperbolic spaces, Israel J. Math. 152 (2006) 143–155 ·Zbl 1129.53057 ·doi:10.1007/BF02771980 |
[26] | Philipp W, Some metrical theorems in number theory, Pacific J. Math. 20 (1967) 109–127 ·Zbl 0144.04201 |
[27] | Stratmann B and Velani S, The Patterson measure for geometrically finite groups with parabolic elements, new and old, Proc. London Math. Soc. (1995) 197–220 ·Zbl 0821.58026 |
[28] | Sullivan D, Disjoint spheres, approximation by quadratic numbers and the logarithm law for geodesics, Acta Mathematica 149 (1982) 215–237 ·Zbl 0517.58028 ·doi:10.1007/BF02392354 |
[29] | Tseng J, On circle rotations and the shrinking target properties, Discrete Contin. Dyn. Syst. 20(4) (2008) 1111–1122 ·Zbl 1151.37004 ·doi:10.3934/dcds.2008.20.1111 |
[30] | Veech W, Gauss measures for transformations on the space of interval exchange maps, Ann. Math. 115 (1982) 201–242 ·Zbl 0486.28014 ·doi:10.2307/1971391 |
[31] | Yoccoz J-C, Continued Fraction Algorithms for Interval Exchange Maps: an Introduction, in ”Frontiers in Number Theory, Geometry and Physics, Proceedings of the Spring School at Les Houches, France (March 2003) |