Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Bifurcations of travelling wave solutions for the Gilson-Pickering equation.(English)Zbl 1177.35161

Summary: The qualitative behavior and exact travelling wave solutions of the Gilson-Pickering equation are studied by using the qualitative theory of polynomial differential system. The phase portraits of the system are given under different parametric conditions. Some exact travelling wave solutions of the Gilson-Pickering equation are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of smooth and non-smooth travelling wave solutions are given.

MSC:

35Q35 PDEs in connection with fluid mechanics
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35B32 Bifurcations in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35B10 Periodic solutions to PDEs
35C05 Solutions to PDEs in closed form

Cite

References:

[1]Clarkson, P. A., Symmetries of a class of nonlinear third-order partial differential equations, Math. Comput. Modelling, 25, 195-212 (1997) ·Zbl 0879.35005
[2]Fornberg, B.; Whitham, G. B., A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. R Soc. Lond. A, 289, 373-404 (1978) ·Zbl 0384.65049
[3]Li, J.; Wu, J.; Zhu, H., Traveling waves for an integrable higher order KdV type wave equations, Internat. J. Bifur. Chaos, 16, 8, 2235-2260 (2006) ·Zbl 1192.37100
[4]Shen, J.; Xu, W., Bifurcations of smooth and non-smooth travelling wave solutions in the generalized Camassa-Holm equation, Chaos, Solitons and Fractals, 26, 1149-1162 (2005) ·Zbl 1072.35579
[5]Li, J.; Liu, Z., Smooth and non-smooth travelling waves in a nonlinearly dispersive equation, Appl. Math. Modelling, 25, 41-56 (2000) ·Zbl 0985.37072
[6]Rosenau, P.; Hyman, J. M., Compactons: solitons with finite wavelength, Phys. Rev. Lett., 70, 564-567 (1993) ·Zbl 0952.35502
[7]Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) ·Zbl 0972.35521
[8]Gilson, C.; Pickering, A., Factorization and Painlevé analysis of a class of nonlinear third-order partial differential equations, J. Phys. A: Math. Gen., 28, 2871-2888 (1995) ·Zbl 0830.35127
[9]Fuchssteiner, B.; Fokas, A. S., Symplectic structure, their Bäcklund transformations and hereditary symmetries, Physica D, 4 (1981) ·Zbl 1194.37114
[10]Cairó, L.; Llibre, J., Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2, Nonlinear Anal., 67, 327-348 (2007) ·Zbl 1189.34065
[11]Li, J.; Dai, H. H., On the Study of Singular Nonlinear traveling wave equations, (Dynamical System Approach (2007), Science Press: Science Press Beijing), (English)
[12]Li, J.; Chen, G., On a class of singular nonlinear traveling wave equations, Internat. J. Bifur. Chaos, 17, 4049-4065 (2007) ·Zbl 1158.35080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp