Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

New estimates for elliptic equations and Hodge type systems.(English)Zbl 1176.35061

In this paper the authors establish new and important estimates for the Laplace operator, the div-curl system, and more general Hodge systems in arbitrary dimensions \(n\), with data in \(L^1\). They also present related results concerning differential forms with coefficients in the limiting Sobolev space \(W^{1,n}\). The proofs rely essentially on the Littlewood-Paley theory combined with refined analytic estimates.

MSC:

35J48 Higher-order elliptic systems
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
58A10 Differential forms in global analysis

Cite

References:

[1]Bethuel, F., Orlandi, G., Smets, D.: On an open problem for Jacobians raised by Bourgain, Brezis and Mironescu. C. R. Math. Acad. Sci. Paris 337 , 381-385 (2003) ·Zbl 1113.35315 ·doi:10.1016/S1631-073X(03)00367-4
[2]Bethuel, F., Orlandi, G., Smets, D.: Approximation with vorticity bounds for the Ginzburg- Landau functional. Comm. Contemp. Math. 5 , 803-832 (2004) ·Zbl 1129.35329 ·doi:10.1142/S0219199704001537
[3]Bourgain, J., Brezis, H.: On the equation div Y = f and application to control of phases. J. Amer. Math. Soc. 16 , 393-426 (2003) 334 , 973-976 (2002) ·Zbl 1075.35006 ·doi:10.1090/S0894-0347-02-00411-3
[4]Bourgain, J., Brezis, H.: New estimates for the Laplacian, the div-curl, and related Hodge systems. C. R. Math. Acad. Sci. Paris 338 , 539-543 (2004) ·Zbl 1101.35013 ·doi:10.1016/j.crma.2003.12.031
[5]Bourgain, J., Brezis, H., Mironescu, P.: H 1/2 maps with values into the circle: minimal con- nections, lifting, and the Ginzburg-Landau equation. Publ. Math. IHES 99 , 1-115 (2004) ·Zbl 1051.49030 ·doi:10.1007/s10240-004-0019-5
[6]Iwaniec, T.: Integrability Theory, and the Jacobians. Lecture Notes, Universität Bonn (1995)
[7]Lanzani, L., Stein, E.: A note on div-curl inequalities. Math. Res. Lett. 12 , 57-61 (2005) ·Zbl 1113.26015 ·doi:10.4310/MRL.2005.v12.n1.a6
[8]Lin, F. H., Rivi‘ere, T.: Complex Ginzburg-Landau equations in high dimensions and codimen- sion two area minimizing currents. J. Eur. Math. Soc. 1 , 237-311 (1999); Erratum 2 , 87-91 (2000) ·Zbl 0939.35056 ·doi:10.1007/s100970050008
[9]Lions, J. L., Magenes, E.: Problemi ai limiti non omogenei. (III). Ann. Scuola Norm. Sup. Pisa 15 , 41-103 (1961) ·Zbl 0101.07901 ·doi:10.5802/aif.111
[10]Smirnov, S. K.: Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents. Algebra i Analiz 5 , 206-238 (1993) (in Russian); English transl.: St. Petersburg Math. J. 5 , 841-867 (1994) ·Zbl 0832.49024
[11]Strauss, M. J.: Variations of Korn’s and Sobolev’s inequalities. In: Proc. Sympos. Pure Math. 23, D. Spencer (ed.), Amer. Math. Soc., 207-214 (1973) ·Zbl 0259.35008
[12]Temam, R.: Mathematical Problems in Plasticity. Gauthier-Villars, Paris (1985)
[13]Van Schaftingen, J.: A simple proof of an inequality of Bourgain, Brezis and Mironescu. C. R. Math. Acad. Sci. Paris 338 , 23-26 (2004) ·Zbl 1188.26015 ·doi:10.1016/j.crma.2003.10.036
[14]Van Schaftingen, J.: Estimates for L1-vector fields. C. R. Math. Acad. Sci. Paris 339 , 181-186 (2004) ·Zbl 1049.35069 ·doi:10.1016/j.crma.2004.05.013
[15]Van Schaftingen, J.: Estimates for L1 vector fields with a second order condition. Acad. Roy. Belg. Bull. Cl. Sci. 15 , 103-112 (2004)
[16]Van Schaftingen, J.: Function spaces between BMO and critical Sobolev spaces. J. Funct. Anal. 236 , 490-516 (2006) ·Zbl 1110.46024 ·doi:10.1016/j.jfa.2006.03.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp