Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The proof of the Lane-Emden conjecture in four space dimensions.(English)Zbl 1171.35035

The author considers the following Lamé-Emden system:
\[\begin{aligned} & -\Delta u = v^p,\\ & - \Delta v = u^q,\end{aligned}\]
in \(\mathbb R^n\). The author proves that if \(n=3,4\) and \(\frac{1}{p} + \frac{1}{q} > 1 - \frac{2}{n}\), then the system above has no positive classical solutions. In the case \(n \geq 5\) the author obtain a new region of nonexistence. The proof is based on Rellich-Pohozaev type identities, on a comparison property between components via the maximum principle, on Sobolev and interpolation inequalities on \(S^{n-1}\) and on feedback and measure arguments.

MSC:

35J45 Systems of elliptic equations, general (MSC2000)
35J60 Nonlinear elliptic equations
35B33 Critical exponents in context of PDEs
35B45 A priori estimates in context of PDEs
35J50 Variational methods for elliptic systems

Cite

References:

[1]Bidaut-Véron, M.-F.; Véron, L., Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106, 489-539 (1991) ·Zbl 0755.35036
[2]Bidaut-Véron, M.-F.; Yarur, C., Semilinear elliptic equations and systems with measure data: Existence and a priori estimates, Adv. Differential Equations, 7, 257-296 (2002) ·Zbl 1223.35168
[3]Birindelli, I.; Mitidieri, E., Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A, 128, 1217-1247 (1998) ·Zbl 0919.35023
[4]Busca, J.; Manásevich, R., A Liouville-type theorem for Lane-Emden system, Indiana Univ. Math. J., 51, 37-51 (2002) ·Zbl 1033.35032
[5]Chen, W.; Li, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63, 615-622 (1991) ·Zbl 0768.35025
[6]Clement, Ph.; de Figueiredo, D. G.; Mitidieri, E., Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations, 17, 923-940 (1992) ·Zbl 0818.35027
[7]de Figueiredo, D. G., Semilinear elliptic systems, (Nonlinear Functional Analysis and Applications to Differential Equations. Nonlinear Functional Analysis and Applications to Differential Equations, Trieste, 1997 (1998), World Sci. Publishing: World Sci. Publishing River Edge, NJ), 122-152 ·Zbl 0955.35020
[8]de Figueiredo, D. G.; Felmer, P., A Liouville-type theorem for elliptic systems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 21, 387-397 (1994) ·Zbl 0820.35042
[9]de Figueiredo, D. G.; Sirakov, B., Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems, Math. Ann., 333, 231-260 (2005) ·Zbl 1165.35360
[10]de Figueiredo, D. G.; Yang, J., A priori bounds for positive solutions of a non-variational elliptic system, Comm. Partial Differential Equations, 26, 2305-2321 (2001) ·Zbl 0997.35015
[11]Gidas, B.; Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34, 525-598 (1981) ·Zbl 0465.35003
[12]Gidas, B.; Spruck, J., A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6, 883-901 (1981) ·Zbl 0462.35041
[13]Lin, C.-S., A classification of solutions of a conformally invariant fourth order equation in \(R^n\), Comment. Math. Helv., 73, 206-231 (1998) ·Zbl 0933.35057
[14]Mitidieri, E., A Rellich type identity and applications, Comm. Partial Differential Equations, 18, 125-151 (1993) ·Zbl 0816.35027
[15]Mitidieri, E., Nonexistence of positive solutions of semilinear elliptic systems in \(R^N\), Differential Integral Equations, 9, 465-479 (1996) ·Zbl 0848.35034
[16]Poláčik, P.; Quittner, P.; Souplet, Ph., Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic systems, Duke Math. J., 139, 555-579 (2007) ·Zbl 1146.35038
[17]Pucci, P.; Serrin, J., A general variational identity, Indiana Univ. Math. J., 35, 681-703 (1986) ·Zbl 0625.35027
[18]Quittner, P.; Souplet, Ph., A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces, Arch. Ration. Mech. Anal., 174, 49-81 (2004) ·Zbl 1113.35062
[19]Quittner, P.; Souplet, Ph., Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Adv. Texts (2007), Springer: Springer Berlin ·Zbl 1128.35003
[20]Reichel, W.; Zou, H., Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differential Equations, 161, 219-243 (2000) ·Zbl 0962.35054
[21]Serrin, J.; Zou, H., Non-existence of positive solutions of semilinear elliptic systems, (Discourses Math. Appl. (1994), Texas A&M Univ.), 55-68 ·Zbl 0900.35121
[22]Serrin, J.; Zou, H., Non-existence of positive solutions of Lane-Emden systems, Differential Integral Equations, 9, 635-653 (1996) ·Zbl 0868.35032
[23]Serrin, J.; Zou, H., Existence of positive solutions of the Lane-Emden system, Atti Semin. Mat. Fis. Univ. Modena, 46, 369-380 (1998) ·Zbl 0917.35031
[24]Souplet, Ph., Optimal regularity conditions for elliptic problems via \(L_\delta^p\) spaces, Duke Math. J., 127, 175-192 (2005) ·Zbl 1130.35057
[25]Souto, M. A.S., A priori estimates and existence of positive solutions of non-linear cooperative elliptic systems, Differential Integral Equations, 8, 1245-1258 (1995) ·Zbl 0823.35064
[26]Zou, H., A priori estimates for a semilinear elliptic systems without variational structure and their applications, Math. Ann., 323, 713-735 (2002) ·Zbl 1005.35024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp