[1] | Altschüler, D.; Coste, A., Quasi-quantum groups, knots, three-manifolds, and topological field theory, Comm. Math. Phys., 150, 1, 83-107 (1992) ·Zbl 0773.57004 |
[2] | Benson, D.; Carlson, J., The cohomology of extra-special groups, Bull. London Math. Soc., 108, 24 (3) (1992) ·Zbl 0795.20038 |
[3] | Cartan, H.; Eilenberg, S., Homological Algebra, Princeton Landmarks Math. (1973), Princeton Univ. Press: Princeton Univ. Press Princeton |
[4] | Dong, C.; Mason, G., Vertex operator algebras and moonshine: A survey, (Progress in Algebraic Combinatorics. Progress in Algebraic Combinatorics, Adv. Stud. Pure Math., vol. 24 (1996), Math. Soc. of Japan: Math. Soc. of Japan Kinokuniya, Tokyo) ·Zbl 0861.17018 |
[5] | Dijkgraaf, R.; Pasquier, V.; Roche, P., Quasi-Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl., 18, 60-72 (1990) ·Zbl 0957.81670 |
[6] | Drinfeld, V., Quasi-Hopf algebras, Leningrad Math. J., 1, 1419-1457 (1990) ·Zbl 0718.16033 |
[7] | Dolan, L.; Goddard, P.; Montague, P., Conformal field theory of twisted vertex operators, Nuclear Phys. B, 338, 529-601 (1990) ·Zbl 0745.17011 |
[8] | Frenkel, I.; Lepowsky, J.; Meurman, A., Vertex Operator Algebras and the Monster (1988), Academic Press: Academic Press New York ·Zbl 0674.17001 |
[9] | Etingof, P.; Gelaki, S., On families of triangular Hopf algebras, Int. Math. Res. Not., 14, 757-768 (2002) ·Zbl 0998.16028 |
[10] | Etingof, P.; Nikshych, D.; Ostrik, V., On fusion categories, Ann. of Math. (2), 162, 2, 581-642 (2005) ·Zbl 1125.16025 |
[11] | Harada, M.; Kono, A., On the integral cohomology of extra-special 2-groups, J. Pure Appl. Math., 44, 215-219 (1987) ·Zbl 0612.20031 |
[12] | Kassel, C., Quantum Groups (1995), Springer-Verlag: Springer-Verlag New York ·Zbl 0808.17003 |
[13] | Majid, Shahn, Tannaka-Kreĭn theorem for quasi-Hopf algebras and other results, (Deformation Theory and Quantum Groups with Applications to Mathematical Physics. Deformation Theory and Quantum Groups with Applications to Mathematical Physics, Amherst, MA, 1990 (1992), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 219-232 ·Zbl 0788.17012 |
[14] | Majid, Shahn, Quantum double for quasi-Hopf algebras, Lett. Math. Phys., 45, 1, 1-9 (1998) ·Zbl 0940.16018 |
[15] | Mason, G., The quantum double of a finite group and its role in conformal field theory, vol. 2, (London Math. Soc. Lecture Note Ser., vol. 212 (1995)), 405-417 ·Zbl 0856.20005 |
[16] | Mason, G., Reed-Muller codes, the fourth cohomology group of a finite group, and the \(β\)-invariant, J. Algebra, 312, 1, 218-227 (2007) ·Zbl 1181.20045 |
[17] | Mason, G.; Ng, S.-H., Group cohomology and gauge equivalence of some twisted quantum doubles, Trans. Amer. Math. Soc., 353, 9, 3465-3509 (2001) ·Zbl 0968.57030 |
[18] | Mason, G.; Ng, S.-H., Central invariants and Frobenius-Schur indicators for semisimple quasi-Hopf algebras, Adv. Math., 190, 1, 161-195 (2005) ·Zbl 1100.16033 |
[19] | Natale, S., On group theoretical Hopf algebras and exact factorizations of finite groups, J. Algebra, 270, 1, 199-211 (2003) ·Zbl 1040.16027 |
[20] | Natale, S., On the exponent of tensor categories coming from finite groups, arXiv: ·Zbl 1152.16029 |
[21] | S.-H. Ng, P. Schauenburg, Higher Frobenius-Schur indicators for pivotal categories, arXiv: math.QA/0503167; S.-H. Ng, P. Schauenburg, Higher Frobenius-Schur indicators for pivotal categories, arXiv: math.QA/0503167 ·Zbl 1153.18008 |
[22] | S.-H. Ng, P. Schauenburg, Central invariants and higher indicators for semisimple quasi-Hopf algebras, arXiv: math.QA/0508140; S.-H. Ng, P. Schauenburg, Central invariants and higher indicators for semisimple quasi-Hopf algebras, arXiv: math.QA/0508140 |
[23] | S.-H. Ng, P. Schauenburg, Frobenius-Schur indicators and exponents of spherical categories, arXiv: math.QA/060101210.1016/j.aim.2006.07.017; S.-H. Ng, P. Schauenburg, Frobenius-Schur indicators and exponents of spherical categories, arXiv: math.QA/060101210.1016/j.aim.2006.07.017 ·Zbl 1138.16017 |
[24] | Schauenburg, P., The monoidal center construction and bimodules, J. Pure Appl. Algebra, 158, 2-3, 325-346 (2001) ·Zbl 0984.18006 |
[25] | Schauenburg, P., Hopf bimodules, coquasibialgebras, and an exact sequence of Kac, Adv. Math., 165, 2, 194-263 (2002) ·Zbl 1006.16054 |
[26] | Quillen, D., The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann., 194, 197-212 (1971) ·Zbl 0225.55015 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.