Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the gauge equivalence of twisted quantum doubles of elementary Abelian and extra-special 2-groups.(English)Zbl 1171.16021

Authors’ summary: We establish braided tensor equivalences among module categories over the twisted quantum double of a finite group defined by an extension of a group \(\overline G\) by an Abelian group, with 3-cocycle inflated from a 3-cocycle on \(\overline G\). We also prove that the canonical ribbon structure of the module category of any twisted quantum double of a finite group is preserved by braided tensor equivalences. We give two main applications: first, if \(G\) is an extra-special 2-group of width at least 2, we show that the quantum double of \(G\) twisted by a 3-cocycle \(\omega\) is gauge equivalent to a twisted quantum double of an elementary Abelian 2-group if, and only if, \(\omega^2\) is trivial; second, we discuss the gauge equivalence classes of twisted quantum doubles of groups of order 8, and classify the braided tensor equivalence classes of these quasi-triangular quasi-bialgebras. It turns out that there are exactly 20 such equivalence classes.

MSC:

16W30 Hopf algebras (associative rings and algebras) (MSC2000)
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
17B37 Quantum groups (quantized enveloping algebras) and related deformations

Cite

References:

[1]Altschüler, D.; Coste, A., Quasi-quantum groups, knots, three-manifolds, and topological field theory, Comm. Math. Phys., 150, 1, 83-107 (1992) ·Zbl 0773.57004
[2]Benson, D.; Carlson, J., The cohomology of extra-special groups, Bull. London Math. Soc., 108, 24 (3) (1992) ·Zbl 0795.20038
[3]Cartan, H.; Eilenberg, S., Homological Algebra, Princeton Landmarks Math. (1973), Princeton Univ. Press: Princeton Univ. Press Princeton
[4]Dong, C.; Mason, G., Vertex operator algebras and moonshine: A survey, (Progress in Algebraic Combinatorics. Progress in Algebraic Combinatorics, Adv. Stud. Pure Math., vol. 24 (1996), Math. Soc. of Japan: Math. Soc. of Japan Kinokuniya, Tokyo) ·Zbl 0861.17018
[5]Dijkgraaf, R.; Pasquier, V.; Roche, P., Quasi-Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl., 18, 60-72 (1990) ·Zbl 0957.81670
[6]Drinfeld, V., Quasi-Hopf algebras, Leningrad Math. J., 1, 1419-1457 (1990) ·Zbl 0718.16033
[7]Dolan, L.; Goddard, P.; Montague, P., Conformal field theory of twisted vertex operators, Nuclear Phys. B, 338, 529-601 (1990) ·Zbl 0745.17011
[8]Frenkel, I.; Lepowsky, J.; Meurman, A., Vertex Operator Algebras and the Monster (1988), Academic Press: Academic Press New York ·Zbl 0674.17001
[9]Etingof, P.; Gelaki, S., On families of triangular Hopf algebras, Int. Math. Res. Not., 14, 757-768 (2002) ·Zbl 0998.16028
[10]Etingof, P.; Nikshych, D.; Ostrik, V., On fusion categories, Ann. of Math. (2), 162, 2, 581-642 (2005) ·Zbl 1125.16025
[11]Harada, M.; Kono, A., On the integral cohomology of extra-special 2-groups, J. Pure Appl. Math., 44, 215-219 (1987) ·Zbl 0612.20031
[12]Kassel, C., Quantum Groups (1995), Springer-Verlag: Springer-Verlag New York ·Zbl 0808.17003
[13]Majid, Shahn, Tannaka-Kreĭn theorem for quasi-Hopf algebras and other results, (Deformation Theory and Quantum Groups with Applications to Mathematical Physics. Deformation Theory and Quantum Groups with Applications to Mathematical Physics, Amherst, MA, 1990 (1992), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 219-232 ·Zbl 0788.17012
[14]Majid, Shahn, Quantum double for quasi-Hopf algebras, Lett. Math. Phys., 45, 1, 1-9 (1998) ·Zbl 0940.16018
[15]Mason, G., The quantum double of a finite group and its role in conformal field theory, vol. 2, (London Math. Soc. Lecture Note Ser., vol. 212 (1995)), 405-417 ·Zbl 0856.20005
[16]Mason, G., Reed-Muller codes, the fourth cohomology group of a finite group, and the \(β\)-invariant, J. Algebra, 312, 1, 218-227 (2007) ·Zbl 1181.20045
[17]Mason, G.; Ng, S.-H., Group cohomology and gauge equivalence of some twisted quantum doubles, Trans. Amer. Math. Soc., 353, 9, 3465-3509 (2001) ·Zbl 0968.57030
[18]Mason, G.; Ng, S.-H., Central invariants and Frobenius-Schur indicators for semisimple quasi-Hopf algebras, Adv. Math., 190, 1, 161-195 (2005) ·Zbl 1100.16033
[19]Natale, S., On group theoretical Hopf algebras and exact factorizations of finite groups, J. Algebra, 270, 1, 199-211 (2003) ·Zbl 1040.16027
[20]Natale, S., On the exponent of tensor categories coming from finite groups, arXiv: ·Zbl 1152.16029
[21]S.-H. Ng, P. Schauenburg, Higher Frobenius-Schur indicators for pivotal categories, arXiv: math.QA/0503167; S.-H. Ng, P. Schauenburg, Higher Frobenius-Schur indicators for pivotal categories, arXiv: math.QA/0503167 ·Zbl 1153.18008
[22]S.-H. Ng, P. Schauenburg, Central invariants and higher indicators for semisimple quasi-Hopf algebras, arXiv: math.QA/0508140; S.-H. Ng, P. Schauenburg, Central invariants and higher indicators for semisimple quasi-Hopf algebras, arXiv: math.QA/0508140
[23]S.-H. Ng, P. Schauenburg, Frobenius-Schur indicators and exponents of spherical categories, arXiv: math.QA/060101210.1016/j.aim.2006.07.017; S.-H. Ng, P. Schauenburg, Frobenius-Schur indicators and exponents of spherical categories, arXiv: math.QA/060101210.1016/j.aim.2006.07.017 ·Zbl 1138.16017
[24]Schauenburg, P., The monoidal center construction and bimodules, J. Pure Appl. Algebra, 158, 2-3, 325-346 (2001) ·Zbl 0984.18006
[25]Schauenburg, P., Hopf bimodules, coquasibialgebras, and an exact sequence of Kac, Adv. Math., 165, 2, 194-263 (2002) ·Zbl 1006.16054
[26]Quillen, D., The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann., 194, 197-212 (1971) ·Zbl 0225.55015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp