Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory.(English)Zbl 1160.42009

Authors’ abstract: A multi(sub)linear maximal operator that acts on the product of \(m\) Lebesgue spaces and is smaller than the \(m\)-fold product of the Hardy-Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón-Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón-Zygmund operators with \(BMO\) functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory

Cite

References:

[1]Alvarez, J.; Pérez, C., Estimates with \(A_\infty\) weights for various singular integral operators, Boll. Unione Mat. Ital. Sez. A (7), 8, 1, 123-133 (1994) ·Zbl 0807.42013
[2]Bennett, C.; Sharpley, R., Interpolation of Operators, Pure Appl. Math., vol. 129 (1988), Academic Press, Inc.: Academic Press, Inc. Boston, MA ·Zbl 0647.46057
[3]Calderón, A. P.; Zygmund, A., On the existence of certain singular integrals, Acta Math., 88, 85-139 (1952) ·Zbl 0047.10201
[4]Chiarenza, F.; Frasca, M.; Longo, P., Interior \(W^{2, p}\) estimates for non-divergence elliptic equations with discontinuous coefficients, Ric. Mat., 40, 149-168 (1991) ·Zbl 0772.35017
[5]Chiarenza, F.; Frasca, M.; Longo, P., \(W^{2, p}\)-solvability of the Dirichlet problem for non-divergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 334, 841-853 (1993) ·Zbl 0818.35023
[6]Christ, M., Lectures on Singular Integral Operators, CBMS Reg. Conf. Ser. Math., vol. 77 (1990), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 0745.42008
[7]Christ, M.; Fefferman, R., A note on weighted norm inequalities for the Hardy-Littlewood maximal operator, Proc. Amer. Math. Soc., 87, 3, 447-448 (1983) ·Zbl 0502.42017
[8]Christ, M.; Journé, J.-L., Polynomial growth estimates for multilinear singular integral operators, Acta Math., 159, 51-80 (1987) ·Zbl 0645.42017
[9]Coifman, R. R.; Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51, 241-250 (1974) ·Zbl 0291.44007
[10]Coifman, R. R.; Meyer, Y., On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212, 315-331 (1975) ·Zbl 0324.44005
[11]Coifman, R. R.; Meyer, Y., Commutateurs d’intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 28, 3, 177-202 (1978) ·Zbl 0368.47031
[12]Coifman, R. R.; Meyer, Y., Nonlinear harmonic analysis, operator theory and P.D.E., (Beijing Lectures in Harmonic Analysis. Beijing Lectures in Harmonic Analysis, Beijing, 1984. Beijing Lectures in Harmonic Analysis. Beijing Lectures in Harmonic Analysis, Beijing, 1984, Ann. of Math. Stud., vol. 112 (1986), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ), 3-45 ·Zbl 0623.47052
[13]Coifman, R.; Rochberg, R.; Weiss, G., Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103, 611-635 (1976) ·Zbl 0326.32011
[14]Cruz-Uribe, D.; Martell, J. M.; Pérez, C., Weighted weak-type inequalities and a conjecture of Sawyer, Int. Math. Res. Not., 30, 1849-1871 (2005) ·Zbl 1092.42008
[15]Cruz-Uribe, D.; Neugebauer, C. J., The structure of the reverse Hölder classes, Trans. Amer. Math. Soc., 347, 8, 2941-2960 (1995) ·Zbl 0851.42016
[16]Curbera, G. P.; García-Cuerva, J.; Martell, J. M.; Pérez, C., Extrapolation with weights to rearrangement invariant function spaces and modular inequalities, with applications to singular integrals, Adv. Math., 203, 256-318 (2006) ·Zbl 1098.42017
[17]Di Fazio, G.; Ragusa, M. A., Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112, 241-256 (1993) ·Zbl 0822.35036
[18]Fefferman, C.; Stein, E. M., Some maximal inequalities, Amer. J. Math., 93, 107-115 (1971) ·Zbl 0222.26019
[19]Fefferman, C.; Stein, E. M., \(H^p\) spaces of several variables, Acta Math., 129, 137-193 (1972) ·Zbl 0257.46078
[20]Fefferman, R. A., Multiparameter Calderón-Zygmund theory, (Harmonic Analysis and Partial Differential Equations. Harmonic Analysis and Partial Differential Equations, Chicago, IL, 1996. Harmonic Analysis and Partial Differential Equations. Harmonic Analysis and Partial Differential Equations, Chicago, IL, 1996, Chicago Lectures in Math. (1999), Univ. Chicago Press: Univ. Chicago Press Chicago, IL), 207-221 ·Zbl 0952.42009
[21]Ferguson, S. H.; Lacey, M. T., A characterization of product BMO by commutators, Acta Math., 189, 2, 143-160 (2002) ·Zbl 1039.47022
[22]García-Cuerva, J.; Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics (1985), North-Holland: North-Holland Amsterdam ·Zbl 0578.46046
[23]Grafakos, L., Classical and Modern Fourier Analysis (2004), Prentice Hall ·Zbl 1148.42001
[24]Grafakos, L.; Martell, J. M., Extrapolation of weighted norm inequalities for multivariable operators and applications, J. Geom. Anal., 14, 1, 19-46 (2004) ·Zbl 1049.42007
[25]Grafakos, L.; Torres, R. H., Multilinear Calderón-Zygmund theory, Adv. Math., 165, 1, 124-164 (2002) ·Zbl 1032.42020
[26]Grafakos, L.; Torres, R. H., Maximal operator and weighted norm inequalities for multilinear singular integrals, Indiana Univ. Math. J., 51, 5, 1261-1276 (2002) ·Zbl 1033.42010
[27]Grafakos, L.; Torres, R. H., On multilinear singular integrals of Calderón-Zygmund type, (Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations. Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial, 2000. Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations. Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial, 2000, Publ. Mat. (2002)), 57-91, vol. Extra ·Zbl 1016.42009
[28]Iwaniec, T.; Sbordone, C., Weak minima of variational integrals, J. Reine Angew. Math., 454, 143-161 (1994) ·Zbl 0802.35016
[29]Janson, S., Mean oscillation and commutators of singular integral operators, Ark. Mat., 16, 263-270 (1978) ·Zbl 0404.42013
[30]Jawerth, B.; Torchinsky, A., Local sharp maximal functions, J. Approx. Theory, 43, 231-270 (1985) ·Zbl 0565.42009
[31]John, F.; Nirenberg, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14, 415-426 (1961) ·Zbl 0102.04302
[32]Journé, J.-L., Calderón-Zygmund Operators, Pseudo-differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math., vol. 994 (1983), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0508.42021
[33]Kenig, C. E.; Stein, E. M., Multilinear estimates and fractional integration, Math. Res. Lett., 6, 1-15 (1999) ·Zbl 0952.42005
[34]M. Lacey, S. Petermichl, J. Pipher, B. Wick, Multiparameter Riesz commutators, Amer. J. Math., in press; M. Lacey, S. Petermichl, J. Pipher, B. Wick, Multiparameter Riesz commutators, Amer. J. Math., in press ·Zbl 1170.42003
[35]Lacey, M.; Thiele, C., \(L^p\) estimates on the bilinear Hilbert transform for \(2 < p < \infty \), Ann. of Math. (2), 146, 3, 693-724 (1997) ·Zbl 0914.46034
[36]Lacey, M.; Thiele, C., On Calderón’s conjecture, Ann. of Math. (2), 149, 2, 475-496 (1999) ·Zbl 0934.42012
[37]Lerner, A. K., On some pointwise inequalities, J. Math. Anal. Appl., 289, 1, 248-259 (2004) ·Zbl 1045.42009
[38]Lerner, A. K., An elementary approach to several results on the Hardy-Littlewood maximal operator, Proc. Amer. Math. Soc., 136, 8, 2829-2833 (2008) ·Zbl 1273.42019
[39]Martín-Reyes, F. J., On the one-sided Hardy-Littlewood maximal function in the real line and in dimensions greater than one, (Fourier Analysis and Partial Differential Equations. Fourier Analysis and Partial Differential Equations, Miraflores de la Sierra, 1992. Fourier Analysis and Partial Differential Equations. Fourier Analysis and Partial Differential Equations, Miraflores de la Sierra, 1992, Stud. Adv. Math. (1995), CRC: CRC Boca Raton, FL), 237-250 ·Zbl 0895.42007
[40]Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165, 207-226 (1972) ·Zbl 0236.26016
[41]Pérez, C., Weighted norm inequalities for singular integral operators, J. London Math. Soc., 49, 296-308 (1994) ·Zbl 0797.42010
[42]Pérez, C., Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., 128, 163-185 (1995) ·Zbl 0831.42010
[43]Pérez, C., On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted \(L^p\)-spaces with different weights, Proc. London Math. Soc. (3), 71, 135-157 (1995) ·Zbl 0829.42019
[44]Pérez, C.; Pradolini, G., Sharp weighted endpoint estimates for commutators of singular integral operators, Michigan Math. J., 49, 23-37 (2001) ·Zbl 1010.42007
[45]Pérez, C.; Torres, R. H., Sharp maximal function estimates for multilinear singular integrals, (Contemp. Math., vol. 320 (2003)), 323-331 ·Zbl 1045.42011
[46]Rao, M. M.; Ren, Z. D., Theory of Orlicz Spaces (1991), Marcel Dekker: Marcel Dekker New York ·Zbl 0724.46032
[47]Stein, E. M., Note on the class \(L \log L\), Studia Math., 32, 305-310 (1969) ·Zbl 0182.47803
[48]Stein, E. M., Singular integrals: The roles of Calderón and Zygmund, Notices Amer. Math. Soc., 45, 1130-1140 (1998) ·Zbl 0973.01027
[49]Volberg, A., Calderón-Zygmund Capacities and Operators on Nonhomogeneous Spaces, CBMS Reg. Conf. Ser. Math., vol. 100 (2003), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI ·Zbl 1053.42022
[50]Wilson, M., Weighted Littlewood-Paley Theory and Exponential-Square Integrability, Lecture Notes in Math., vol. 1924 (2008), Springer: Springer Berlin ·Zbl 1138.42011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp