Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Inner products in covolume and mimetic methods.(English)Zbl 1155.65103

A class of compatible spatial discretizations for solving partial differential equations is presented. A discrete exact framework is developed to classify these methods which include the mimetic and the covolume methods as well as certain low-order finite element methods. This construction ensures discrete analogs of the differential operators that satisfy the identities and theorems of vector calculus, in particular a Helmholtz decomposition theorem. It is shown that these methods differ only in their choice of discrete inner products. Finally, certain uniqueness results for the covolume inner product are shown.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations

Cite

References:

[1]D.N. Arnold, Differential complexes and numerical stability, in Proceedings of the International Congress of Mathematicians, Vol. I, Higher Ed. Press, Beijing (2002) 137-157. ·Zbl 1023.65113
[2]M. Berndt, K. Lipnikov, D. Moulton and M. Shashkov, Convergence of mimetic finite difference discretizations of the diffusion equation. East-West J. Numer. Math9 (2001) 253-316. Zbl1014.65114 ·Zbl 1014.65114
[3]P. Bochev and J.M. Hyman, Principles of mimetic discretizations of differential operators, in Compatible Spatial Discretizations, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications142, Springer, New York (2006). ·Zbl 1110.65103
[4]A. Bossavit, Generating whitney forms of polynomial degree one and higher. IEEE Trans. Magn.38 (2002) 341-344.
[5]R. Hiptmair, Canonical construction of finite elements. Math. Comp.68 (1999) 1325-1346. Zbl0938.65132 ·Zbl 0938.65132 ·doi:10.1090/S0025-5718-99-01166-7
[6]A. Hirani, Discrete Exterior Calculus. Ph.D. thesis, California Institute of Technology, USA (2003).
[7]J.M. Hyman and M. Shashkov, The adjoint operators for the natural discretizations for the divergence, gradient, and curl on logically rectangular grids. IMACS J. Appl. Num. Math.25 (1997) 1-30. Zbl1005.65024 ·Zbl 1005.65024 ·doi:10.1016/S0168-9274(97)00097-4
[8]J.M. Hyman and M. Shashkov, Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl.33 (1997) 81-104. ·Zbl 0868.65006 ·doi:10.1016/S0898-1221(97)00009-6
[9]J.M. Hyman and M. Shashkov, Mimetic discretizations for Maxwell’s equations. J. Comp. Phys.151 (1999) 881-909. ·Zbl 0956.78015 ·doi:10.1006/jcph.1999.6225
[10]J.M. Hyman and M. Shashkov, The orthogonal decomposition theorems for mimetic finite difference methods. SIAM J. Numer. Anal.36 (1999) 788-818. ·Zbl 0972.65077 ·doi:10.1137/S0036142996314044
[11]J.C. Nedelec, Mixed finite elements in \Bbb R 3 . Numer. Math.35 (1980) 315-341. ·Zbl 0419.65069 ·doi:10.1007/BF01396415
[12]J.C. Nedelec, A new family of mixed finite elements in \Bbb R 3 . Numer. Math.50 (1986) 57-81. ·Zbl 0625.65107 ·doi:10.1007/BF01389668
[13]R.A. Nicolaides, Direct discretization of planar div-curl problems. SIAM J. Numer. Anal.29 (1992) 32-56. Zbl0745.65063 ·Zbl 0745.65063 ·doi:10.1137/0729003
[14]R. Nicolaides and K. Trapp, Covolume discretizations of differential forms, in Compatible Spatial Discretizations, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications142, Springer, New York (2006). ·Zbl 1110.65024
[15]R.A. Nicolaides and D.Q. Wang, Convergence analysis of a covolume scheme for Maxwell’s equations in three dimensions. Math. Comp.67 (1998) 947-963. ·Zbl 0907.65116 ·doi:10.1090/S0025-5718-98-00971-5
[16]R.A. Nicolaides and X. Wu, Covolume solutions of three-dimensional div-curl equations. SIAM J. Numer. Anal.34 (1997) 2195-2203. ·Zbl 0889.35006 ·doi:10.1137/S0036142994277286
[17]P.A. Raviart and J.M. Thomas, A mixed finite elemnt method for second order elliptic problems, in Springer Lecture Notes in Mathematics606, Springer-Verlag (1977) 292-315. ·Zbl 0362.65089
[18]K. Trapp, A Class of Compatible Discretizations with Applications to Div-Curl Systems. Ph.D. thesis, Carnegie Mellon University, USA (2004).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp