65N30 | Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs |
65N06 | Finite difference methods for boundary value problems involving PDEs |
35J25 | Boundary value problems for second-order elliptic equations |
[1] | D.N. Arnold, Differential complexes and numerical stability, in Proceedings of the International Congress of Mathematicians, Vol. I, Higher Ed. Press, Beijing (2002) 137-157. ·Zbl 1023.65113 |
[2] | M. Berndt, K. Lipnikov, D. Moulton and M. Shashkov, Convergence of mimetic finite difference discretizations of the diffusion equation. East-West J. Numer. Math9 (2001) 253-316. Zbl1014.65114 ·Zbl 1014.65114 |
[3] | P. Bochev and J.M. Hyman, Principles of mimetic discretizations of differential operators, in Compatible Spatial Discretizations, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications142, Springer, New York (2006). ·Zbl 1110.65103 |
[4] | A. Bossavit, Generating whitney forms of polynomial degree one and higher. IEEE Trans. Magn.38 (2002) 341-344. |
[5] | R. Hiptmair, Canonical construction of finite elements. Math. Comp.68 (1999) 1325-1346. Zbl0938.65132 ·Zbl 0938.65132 ·doi:10.1090/S0025-5718-99-01166-7 |
[6] | A. Hirani, Discrete Exterior Calculus. Ph.D. thesis, California Institute of Technology, USA (2003). |
[7] | J.M. Hyman and M. Shashkov, The adjoint operators for the natural discretizations for the divergence, gradient, and curl on logically rectangular grids. IMACS J. Appl. Num. Math.25 (1997) 1-30. Zbl1005.65024 ·Zbl 1005.65024 ·doi:10.1016/S0168-9274(97)00097-4 |
[8] | J.M. Hyman and M. Shashkov, Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl.33 (1997) 81-104. ·Zbl 0868.65006 ·doi:10.1016/S0898-1221(97)00009-6 |
[9] | J.M. Hyman and M. Shashkov, Mimetic discretizations for Maxwell’s equations. J. Comp. Phys.151 (1999) 881-909. ·Zbl 0956.78015 ·doi:10.1006/jcph.1999.6225 |
[10] | J.M. Hyman and M. Shashkov, The orthogonal decomposition theorems for mimetic finite difference methods. SIAM J. Numer. Anal.36 (1999) 788-818. ·Zbl 0972.65077 ·doi:10.1137/S0036142996314044 |
[11] | J.C. Nedelec, Mixed finite elements in \Bbb R 3 . Numer. Math.35 (1980) 315-341. ·Zbl 0419.65069 ·doi:10.1007/BF01396415 |
[12] | J.C. Nedelec, A new family of mixed finite elements in \Bbb R 3 . Numer. Math.50 (1986) 57-81. ·Zbl 0625.65107 ·doi:10.1007/BF01389668 |
[13] | R.A. Nicolaides, Direct discretization of planar div-curl problems. SIAM J. Numer. Anal.29 (1992) 32-56. Zbl0745.65063 ·Zbl 0745.65063 ·doi:10.1137/0729003 |
[14] | R. Nicolaides and K. Trapp, Covolume discretizations of differential forms, in Compatible Spatial Discretizations, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications142, Springer, New York (2006). ·Zbl 1110.65024 |
[15] | R.A. Nicolaides and D.Q. Wang, Convergence analysis of a covolume scheme for Maxwell’s equations in three dimensions. Math. Comp.67 (1998) 947-963. ·Zbl 0907.65116 ·doi:10.1090/S0025-5718-98-00971-5 |
[16] | R.A. Nicolaides and X. Wu, Covolume solutions of three-dimensional div-curl equations. SIAM J. Numer. Anal.34 (1997) 2195-2203. ·Zbl 0889.35006 ·doi:10.1137/S0036142994277286 |
[17] | P.A. Raviart and J.M. Thomas, A mixed finite elemnt method for second order elliptic problems, in Springer Lecture Notes in Mathematics606, Springer-Verlag (1977) 292-315. ·Zbl 0362.65089 |
[18] | K. Trapp, A Class of Compatible Discretizations with Applications to Div-Curl Systems. Ph.D. thesis, Carnegie Mellon University, USA (2004). |