[1] | Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164 (1941) ·JFM 67.0837.01 |
[2] | van der Vorst, H. A., Bi-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 631-644 (1992) ·Zbl 0761.65023 |
[3] | Chan, S.; Phoon, K.; Lee, F., A modified Jacobi preconditioner for solving ill-conditioned Biot’s consolidation equations using symmetric quasi-minimal residual method, Int. J. Numer. Anal. Methods Geomech., 25, 1001-1025 (2001) ·Zbl 1065.74605 |
[4] | Gambolati, G.; Pini, G.; Ferronato, M., Numerical performance of projection methods in finite element consolidation models, Int. J. Numer. Anal. Methods Geomech., 25, 1429-1447 (2001) ·Zbl 1112.74513 |
[5] | Gambolati, G.; Pini, G.; Ferronato, M., Direct, partitioned and projected solution to finite element consolidation models, Int. J. Numer. Anal. Methods Geomech., 26, 1371-1383 (2002) ·Zbl 1062.74612 |
[6] | Gambolati, G.; Pini, G.; Ferronato, M., Scaling improves stability of preconditioned CG-like solvers for FE consolidation equations, Int. J. Numer. Anal. Methods Geomech., 27, 1043-1056 (2003) ·Zbl 1137.74437 |
[7] | Toh, K. C.; Phoon, K. K.; Chan, S. H., Block preconditioners for symmetric indefinite linear systems, Int. J. Numer. Meth. Eng., 60, 1361-1381 (2004) ·Zbl 1065.65064 |
[8] | Chen, X.; Toh, K. C.; Phoon, K. K., A modified SSOR preconditioner for sparse symmetric indefinite linear systems of equations, Int. J. Numer. Meth. Eng., 65, 785-807 (2006) ·Zbl 1114.74056 |
[9] | Ferronato, M.; Gambolati, G.; Teatini, P., Ill-conditioning of finite element poroelasticity equations, Int. J. Solids Struct., 38, 5995-6014 (2001) ·Zbl 1075.74643 |
[10] | Lukšan, L.; Vlček, J., Indefinitely preconditioned inexact Newton method for large sparse equality constrained nonlinear programming problems, Numer. Lin. Alg. Appl., 5, 219-247 (1998) ·Zbl 0937.65066 |
[11] | Keller, C.; Gould, N. I.M.; Wathen, A. J., Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl., 21, 1300-1317 (2000) ·Zbl 0960.65052 |
[12] | Perugia, I.; Simoncini, V., Block-diagonal and indefinite symmetric preconditioners for mixed finite elements formulations, Numer. Lin. Alg. Appl., 7, 585-616 (2000) ·Zbl 1051.65038 |
[13] | Bergamaschi, L.; Gondzio, J.; Zilli, G., Preconditioning indefinite systems in interior point methods for optimization, Comput. Optim. Appl., 28, 149-171 (2004) ·Zbl 1056.90137 |
[14] | Benzi, M.; Golub, G.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) ·Zbl 1115.65034 |
[15] | Dollar, H. S.; Gould, N. I.M.; Schilders, W. H.A.; Wathen, A. J., Implicit-factorization preconditioning and iterative solvers for regularized saddle-point systems, SIAM J. Matrix Anal. Appl., 28, 170-189 (2006) ·Zbl 1104.65310 |
[16] | Bergamaschi, L.; Gondzio, J.; Venturin, M.; Zilli, G., Inexact constraint preconditioners for linear systems arising in interior point methods, Comput. Optim. Appl., 36, 136-147 (2007) ·Zbl 1148.90349 |
[17] | Bergamaschi, L.; Ferronato, M.; Gambolati, G., Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations, Comp. Meth. Appl. Mech. Eng., 196, 2647-2656 (2007) ·Zbl 1173.76330 |
[18] | Benzi, M.; Tůma, M., A comparative study of sparse approximate inverse preconditioners, Appl. Numer. Math., 30, 305-340 (1999) ·Zbl 0949.65043 |
[19] | Saad, Y., ILUT: a dual threshold incomplete ILU factorization, Numer. Lin. Alg. Appl., 1, 387-402 (1994) ·Zbl 0838.65026 |
[20] | Dollar, H. S., Constraint-style preconditioners for regularized saddle point problems, SIAM J. Matrix Anal. Appl., 29, 672-684 (2007) ·Zbl 1144.65032 |
[21] | Durazzi, C.; Ruggiero, V., Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems, Numer. Lin. Alg. Appl., 10, 673-688 (2003) ·Zbl 1071.65512 |
[22] | Rozloznı´k, M.; Simoncini, V., Krylov subspace methods for saddle point problems with indefinite preconditioning, SIAM J. Matrix Anal. Appl., 24, 368-391 (2002) ·Zbl 1021.65016 |
[23] | Benzi, M.; Meyer, C. D.; Tůma, M., A sparse approximate inverse preconditioner for the conjugate gradient method, SIAM J. Sci. Comput., 17, 1135-1149 (1996) ·Zbl 0856.65019 |
[24] | Benzi, M.; Cullum, J. K.; Tůma, M., Robust approximate inverse preconditioning for the conjugate gradient method, SIAM J. Sci. Comput., 22, 1318-1332 (2000) ·Zbl 0985.65035 |
[25] | Freund, R. W.; Nachtigal, N. M., Software for simplified Lanczos and QMR algorithms, Appl. Numer. Math., 19, 319-341 (1995) ·Zbl 0853.65041 |
[26] | Benzi, M.; Simoncini, V., On the eigenvalues of a class of saddle point matrices, Numer. Math., 103, 173-196 (2006) ·Zbl 1103.65033 |
[27] | Silvester, D.; Wathen, A., Fast iterative solution of stabilised Stokes systems, Part II: using general block preconditioners, SIAM J. Numer. Anal., 31, 1352-1367 (1994) ·Zbl 0810.76044 |
[28] | Silvester, D.; Elman, H.; Kay, D.; Wathen, A., Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow, J. Comp. Appl. Math., 128, 261-279 (2001) ·Zbl 0983.76051 |
[29] | Elman, H. C.; Silvester, D. J.; Wathen, A. J., Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math., 90, 665-688 (2002) ·Zbl 1143.76531 |
[30] | Simoncini, V., Block triangular preconditioners for symmetric saddle-point problems, Appl. Numer. Math., 49, 63-80 (2004) ·Zbl 1053.65033 |
[31] | Gambolati, G.; Pini, G.; Tucciarelli, T., A 3-D finite element conjugate gradient model of subsurface flow with automatic mesh generation, Adv. Water Resour., 3, 34-41 (1986) ·Zbl 0619.76112 |
[32] | Castelletto, N.; Ferronato, M.; Gambolati, G.; Putti, M.; Teatini, P., Can Venice be raised by pumping water underground? A pilot project to help decide, Water Resour. Res., 44, W01408 (2008) |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.