Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Mixed constraint preconditioners for the iterative solution of FE coupled consolidation equations.(English)Zbl 1154.65015

Summary: The finite element (FE) integration of the coupled consolidation equations requires the solution of linear symmetric systems with an indefinite saddle point coefficient matrix. Because of ill-conditioning, the repeated solution in time of the FE equations may be a major computational issue requiring ad hoc preconditioning strategies to guarantee the efficient convergence of Krylov subspace methods.
In the present paper a mixed constraint preconditioner (MCP) is developed combining implicit and explicit approximations of the inverse of the structural sub-matrix, with the performance investigated in some representative examples. An upper bound of the eigenvalue distance from unity is theoretically provided in order to give practical indications on how to improve the preconditioner. The MCP is efficiently implemented into a Krylov subspace method with the performance obtained in 2D and 3D examples compared to that of inexact constraint preconditioners and least square logarithm scaled ILUT preconditioners.
Two variants of MCP (T-MCP and D-MCP), developed with the aim at reducing the cost of the preconditioner application, are also tested. The results show that the MCP variants constitute a reliable and robust approach for the efficient solution of realistic coupled consolidation FE models, and especially so in severely ill-conditioned problems.

MSC:

65F10 Iterative numerical methods for linear systems
65F35 Numerical computation of matrix norms, conditioning, scaling
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K15 Initial value problems for second-order parabolic equations

Software:

QMRPACK;ILUT

Cite

References:

[1]Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164 (1941) ·JFM 67.0837.01
[2]van der Vorst, H. A., Bi-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 631-644 (1992) ·Zbl 0761.65023
[3]Chan, S.; Phoon, K.; Lee, F., A modified Jacobi preconditioner for solving ill-conditioned Biot’s consolidation equations using symmetric quasi-minimal residual method, Int. J. Numer. Anal. Methods Geomech., 25, 1001-1025 (2001) ·Zbl 1065.74605
[4]Gambolati, G.; Pini, G.; Ferronato, M., Numerical performance of projection methods in finite element consolidation models, Int. J. Numer. Anal. Methods Geomech., 25, 1429-1447 (2001) ·Zbl 1112.74513
[5]Gambolati, G.; Pini, G.; Ferronato, M., Direct, partitioned and projected solution to finite element consolidation models, Int. J. Numer. Anal. Methods Geomech., 26, 1371-1383 (2002) ·Zbl 1062.74612
[6]Gambolati, G.; Pini, G.; Ferronato, M., Scaling improves stability of preconditioned CG-like solvers for FE consolidation equations, Int. J. Numer. Anal. Methods Geomech., 27, 1043-1056 (2003) ·Zbl 1137.74437
[7]Toh, K. C.; Phoon, K. K.; Chan, S. H., Block preconditioners for symmetric indefinite linear systems, Int. J. Numer. Meth. Eng., 60, 1361-1381 (2004) ·Zbl 1065.65064
[8]Chen, X.; Toh, K. C.; Phoon, K. K., A modified SSOR preconditioner for sparse symmetric indefinite linear systems of equations, Int. J. Numer. Meth. Eng., 65, 785-807 (2006) ·Zbl 1114.74056
[9]Ferronato, M.; Gambolati, G.; Teatini, P., Ill-conditioning of finite element poroelasticity equations, Int. J. Solids Struct., 38, 5995-6014 (2001) ·Zbl 1075.74643
[10]Lukšan, L.; Vlček, J., Indefinitely preconditioned inexact Newton method for large sparse equality constrained nonlinear programming problems, Numer. Lin. Alg. Appl., 5, 219-247 (1998) ·Zbl 0937.65066
[11]Keller, C.; Gould, N. I.M.; Wathen, A. J., Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl., 21, 1300-1317 (2000) ·Zbl 0960.65052
[12]Perugia, I.; Simoncini, V., Block-diagonal and indefinite symmetric preconditioners for mixed finite elements formulations, Numer. Lin. Alg. Appl., 7, 585-616 (2000) ·Zbl 1051.65038
[13]Bergamaschi, L.; Gondzio, J.; Zilli, G., Preconditioning indefinite systems in interior point methods for optimization, Comput. Optim. Appl., 28, 149-171 (2004) ·Zbl 1056.90137
[14]Benzi, M.; Golub, G.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) ·Zbl 1115.65034
[15]Dollar, H. S.; Gould, N. I.M.; Schilders, W. H.A.; Wathen, A. J., Implicit-factorization preconditioning and iterative solvers for regularized saddle-point systems, SIAM J. Matrix Anal. Appl., 28, 170-189 (2006) ·Zbl 1104.65310
[16]Bergamaschi, L.; Gondzio, J.; Venturin, M.; Zilli, G., Inexact constraint preconditioners for linear systems arising in interior point methods, Comput. Optim. Appl., 36, 136-147 (2007) ·Zbl 1148.90349
[17]Bergamaschi, L.; Ferronato, M.; Gambolati, G., Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations, Comp. Meth. Appl. Mech. Eng., 196, 2647-2656 (2007) ·Zbl 1173.76330
[18]Benzi, M.; Tůma, M., A comparative study of sparse approximate inverse preconditioners, Appl. Numer. Math., 30, 305-340 (1999) ·Zbl 0949.65043
[19]Saad, Y., ILUT: a dual threshold incomplete ILU factorization, Numer. Lin. Alg. Appl., 1, 387-402 (1994) ·Zbl 0838.65026
[20]Dollar, H. S., Constraint-style preconditioners for regularized saddle point problems, SIAM J. Matrix Anal. Appl., 29, 672-684 (2007) ·Zbl 1144.65032
[21]Durazzi, C.; Ruggiero, V., Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems, Numer. Lin. Alg. Appl., 10, 673-688 (2003) ·Zbl 1071.65512
[22]Rozloznı´k, M.; Simoncini, V., Krylov subspace methods for saddle point problems with indefinite preconditioning, SIAM J. Matrix Anal. Appl., 24, 368-391 (2002) ·Zbl 1021.65016
[23]Benzi, M.; Meyer, C. D.; Tůma, M., A sparse approximate inverse preconditioner for the conjugate gradient method, SIAM J. Sci. Comput., 17, 1135-1149 (1996) ·Zbl 0856.65019
[24]Benzi, M.; Cullum, J. K.; Tůma, M., Robust approximate inverse preconditioning for the conjugate gradient method, SIAM J. Sci. Comput., 22, 1318-1332 (2000) ·Zbl 0985.65035
[25]Freund, R. W.; Nachtigal, N. M., Software for simplified Lanczos and QMR algorithms, Appl. Numer. Math., 19, 319-341 (1995) ·Zbl 0853.65041
[26]Benzi, M.; Simoncini, V., On the eigenvalues of a class of saddle point matrices, Numer. Math., 103, 173-196 (2006) ·Zbl 1103.65033
[27]Silvester, D.; Wathen, A., Fast iterative solution of stabilised Stokes systems, Part II: using general block preconditioners, SIAM J. Numer. Anal., 31, 1352-1367 (1994) ·Zbl 0810.76044
[28]Silvester, D.; Elman, H.; Kay, D.; Wathen, A., Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow, J. Comp. Appl. Math., 128, 261-279 (2001) ·Zbl 0983.76051
[29]Elman, H. C.; Silvester, D. J.; Wathen, A. J., Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math., 90, 665-688 (2002) ·Zbl 1143.76531
[30]Simoncini, V., Block triangular preconditioners for symmetric saddle-point problems, Appl. Numer. Math., 49, 63-80 (2004) ·Zbl 1053.65033
[31]Gambolati, G.; Pini, G.; Tucciarelli, T., A 3-D finite element conjugate gradient model of subsurface flow with automatic mesh generation, Adv. Water Resour., 3, 34-41 (1986) ·Zbl 0619.76112
[32]Castelletto, N.; Ferronato, M.; Gambolati, G.; Putti, M.; Teatini, P., Can Venice be raised by pumping water underground? A pilot project to help decide, Water Resour. Res., 44, W01408 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp