[1] | Assouad, P., Sur la distance de Nagata, C. R. Acad. Sci. Paris Sér. I Math., 294, 1, 31-34 (1982) ·Zbl 0481.54015 |
[2] | Ancel, F., The role of countable dimensionality in the theory of cell-like relations, Trans. Amer. Math. Soc., 287, 1, 1-40 (1985) ·Zbl 0507.54017 |
[3] | Bartels, A. C., Squeezing and higher algebraic \(K\)-theory, \(K\)-Theory, 28, 1, 19-37 (2003), MR MR1988817 (2004f:19006) ·Zbl 1036.19002 |
[4] | Bell, G. C., Property A for groups acting on metric spaces, Topol. Appl., 130, 3, 239-251 (2003), MR MR1978888 (2004d:20047) ·Zbl 1064.20046 |
[5] | Bell, G.; Dranishnikov, A., On asymptotic dimension of groups, Algebr. Geom. Topol., 1, 57-71 (2001) ·Zbl 1008.20039 |
[6] | Bell, G.; Dranishnikov, A., On asymptotic dimension of groups acting on trees, Geom. Dedicata, 103, 89-101 (2004), MR MR2034954 (2005b:20078) ·Zbl 1131.20032 |
[7] | Bell, G. C.; Dranishnikov, A. N., A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory, Trans. Amer. Math. Soc., 358, 11, 4749-4764 (2006), (electronic). MR MR2231870 ·Zbl 1117.20032 |
[8] | Bell, G. C.; Dranishnikov, A. N., Asymptotic dimension in Bedlewo ·Zbl 1117.20032 |
[9] | Bell, G. C.; Dranishnikov, A. N.; Keesling, J. E., On a formula for the asymptotic dimension of free products, Fund. Math., 183, 1, 39-45 (2004), MR MR2098148 (2005g:20064) ·Zbl 1068.20044 |
[10] | Bell, G.; Fujiwara, K., The asymptotic dimension of a curve graph is finite ·Zbl 1135.57010 |
[11] | G. Bell, A. Nagórko, A macro-scale analog of Nöbeling space, in preparation; G. Bell, A. Nagórko, A macro-scale analog of Nöbeling space, in preparation |
[12] | Bestvina, M., Characterizing \(k\)-dimensional universal Menger compacta, Bull. Amer. Math. Soc. (N.S.), 11, 2, 369-370 (1984), MR MR752801 (86g:54047) ·Zbl 0545.54025 |
[13] | Bestvina, M.; Fujiwara, K., Bounded cohomology of subgroups of mapping class groups, Geom. Topol., 6, 69-89 (2002), (electronic). MR MR1914565 (2003f:57003) ·Zbl 1021.57001 |
[14] | Boltjanskii, V. G., An example of two-dimensional compactum whose topological square has dimension equal to three, Dokl. Akad. Nauk SSSR, 67, 597-599 (1949) ·Zbl 0035.38703 |
[15] | Bonk, M.; Schramm, O., Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal., 10, 2, 266-306 (2000), MR MR1771428 (2001g:53077) ·Zbl 0972.53021 |
[16] | Borel, A.; Serre, J.-P., Corners and arithmetic groups, Comment. Math. Helv., 48, 436-491 (1973), Avec un appendice: Arrondissement des variétés à coins, par A. Douady, L. Hérault. MR MR0387495 (52 #8337) ·Zbl 0274.22011 |
[17] | P. Borst, A weakly infinite-dimensional compactum not having Property C, preprint, 2005; P. Borst, A weakly infinite-dimensional compactum not having Property C, preprint, 2005 |
[18] | B. Bowditch, Relatively hyperbolic groups, preprint, Southampton, 1997; B. Bowditch, Relatively hyperbolic groups, preprint, Southampton, 1997 |
[19] | Bowers, P. L., General position properties satisfied by finite products of dendrites, Trans. Amer. Math. Soc., 288, 2, 739-753 (1985), MR MR776401 (86f:54063) ·Zbl 0568.54028 |
[20] | Bridson, M. R.; Gersten, S. M., The optimal isoperimetric inequality for torus bundles over the circle, Quart. J. Math. Oxford Ser. (2), 47, 185, 1-23 (1996) ·Zbl 0852.20031 |
[21] | Bridson, M. R.; Haefliger, A., Metric spaces of non-positive curvature, (Grundlehren Math. Wiss., vol. 319 (1999), Springer: Springer Berlin), MR MR1744486 (2000k:53038) ·Zbl 0988.53001 |
[22] | Brodskiy, N.; Dydak, J.; Higes, J.; Mitra, A., Nagata-Assouad dimension via Lipschitz extensions ·Zbl 1187.54029 |
[23] | Brodskiy, N.; Dydak, J.; Lang, U., Assouad-Nagata dimension of wreath products of groups ·Zbl 1296.54040 |
[24] | Brodskiy, N.; Dydak, J.; Levin, M.; Mitra, A., Hurewicz theorem for Assouad-Nagata dimension ·Zbl 1154.54020 |
[25] | Brown, K. S., Buildings, Springer Monogr. Math. (1998), Springer: Springer New York, Reprint of the 1989 original. MR MR1644630 (99d:20042) ·Zbl 0922.20034 |
[26] | Buyalo, S., Asymptotic dimension of a hyperbolic space and the capacity dimension of its boundary at infinity, Algebra i Analiz. Algebra i Analiz, St. Petersburg Math. J., 17, 2, 267-283 (2006), (in Russian); translation in ·Zbl 1100.31006 |
[27] | Buyalo, S.; Lebedeva, N., Dimension of locally and asymptotically self-similar spaces ·Zbl 1145.54029 |
[28] | Buyalo, S.; Dranishnikov, A.; Schroeder, V., Embedding of hyperbolic groups into products of binary trees, Invent. Math., 169, 1, 153-192 (2007), MR MR2308852 (2008b:57001) ·Zbl 1157.57003 |
[29] | Carlsson, G.; Goldfarb, B., On homological coherence of discrete groups, J. Algebra, 276, 2, 502-514 (2004), MR MR2058455 (2005a:20078) ·Zbl 1057.22013 |
[30] | Charney, R.; Crisp, J., Automorphism groups of some affine and finite type Artin groups, Math. Res. Lett., 12, 2-3, 321-333 (2005), MR MR2150887 (2006d:20062) ·Zbl 1077.20055 |
[31] | de la Harpe, P., Topics in Geometric Group Theory, Chicago Lectures in Math. (2000), University of Chicago Press: University of Chicago Press Chicago, IL, MR MR1786869 (2001i:20081) ·Zbl 0965.20025 |
[32] | Dranishnikov, A., Asymptotic topology, Uspekhi Mat. Nauk, 55, 6(336), 71-116 (2000), MR MR1840358 (2002j:55002) ·Zbl 1028.54032 |
[33] | Dranishnikov, A., On asymptotic inductive dimension, JP J. Geom. Topol., 1, 3, 239-247 (2001), MR MR1890851 (2003a:54038) ·Zbl 1059.54024 |
[34] | Dranishnikov, A., On hypersphericity of manifolds with finite asymptotic dimension, Trans. Amer. Math. Soc., 355, 1, 155-167 (2003), (electronic). MR MR1928082 (2003g:53055) ·Zbl 1020.53025 |
[35] | Dranishnikov, A., On some approximation problems in topology, (Ten Mathematical Essays on Approximation in Analysis and Topology (2005), Elsevier), 61-94 ·Zbl 1085.55012 |
[36] | Dranishnikov, A., Groups with a polynomial dimension growth, Geom. Dedicata, 119, 1-15 (2006), MR MR2247644 (2007c:20099) ·Zbl 1113.20036 |
[37] | Dranishnikov, A., Cohomological approach to asymptotic dimension ·Zbl 1175.20035 |
[38] | A. Dranishnikov, On asymptotic dimension of amalgamated products and right-angled Coxeter groups, Algebr. Geom. Topol., in press; A. Dranishnikov, On asymptotic dimension of amalgamated products and right-angled Coxeter groups, Algebr. Geom. Topol., in press ·Zbl 1176.20047 |
[39] | Dranishnikov, A., Boundaries of Coxeter groups and simplicial complexes with given links, J. Pure Appl. Algebra, 137, 2, 139-151 (1999) ·Zbl 0946.20020 |
[40] | Dranishnikov, A., Cohomological dimension theory of compact metric spaces ·Zbl 0719.55001 |
[41] | Dranishnikov, A., On the mapping intersection problem, Pacific J. Math., 173, 2, 403-412 (1996), MR MR1394397 (97e:54030) ·Zbl 0868.55001 |
[42] | Dranishnikov, A.; Ferry, S.; Weinberger, S., An etale approach to the Novikov conjecture, Commun. Pure Appl. Math., 61, 2, 139-155 (2008), MR MR2368371 ·Zbl 1137.57027 |
[43] | Dranishnikov, A.; Januszkiewicz, T., Every Coxeter group acts amenably on a compact space, Topology Proc., 24, 135-141 (1999) ·Zbl 0973.20029 |
[44] | Dranishnikov, A. N.; Keesling, J.; Uspenskij, V. V., On the Higson corona of uniformly contractible spaces, Topology, 37, 4, 791-803 (1998), MR MR1607744 (99k:57049) ·Zbl 0910.54026 |
[45] | Dranishnikov, A. N.; Repovš, D.; Ščepin, E. V., Dimension of products with continua, Topology Proc., 18, 57-73 (1993), MR MR1305123 (96b:54054) ·Zbl 0871.54039 |
[46] | Dranišnikov, A. N.; Repovš, D.; Ščepin, E. V., On intersections of compacta of complementary dimensions in Euclidean space, Topology Appl., 38, 3, 237-253 (1991), MR MR1098904 (92g:57032) ·Zbl 0719.54015 |
[47] | Dranishnikov, A.; Schroeder, V., Embedding of Coxeter groups in a product of trees |
[48] | Dranishnikov, A.; Smith, J., Asymptotic dimension of discrete groups, Fund. Math., 189, 1, 27-34 (2006), MR MR2213160 ·Zbl 1100.20034 |
[49] | Dranishnikov, A.; Smith, J., On asymptotic Assouad-Nagata dimension, Topology Appl., 154, 4, 934-952 (2007) ·Zbl 1116.54020 |
[50] | Dranishnikov, A.; Zarichnyi, M., Universal spaces for asymptotic dimension, Topology Appl., 140, 2-3, 203-225 (2004), MR MR2074917 (2005e:54032) ·Zbl 1063.54027 |
[51] | J. Dydak, J. Higes, Asymptotic cones and Assouad-Nagata dimension, Proc. Amer. Math. Soc., in press; J. Dydak, J. Higes, Asymptotic cones and Assouad-Nagata dimension, Proc. Amer. Math. Soc., in press ·Zbl 1147.54018 |
[52] | Dydak, J.; Hoffland, C. S., An alternative definition of coarse structures ·Zbl 1145.54032 |
[53] | Dymara, J.; Schick, T., Buildings have finite asymptotic dimension ·Zbl 1177.20049 |
[54] | Engelking, R., Theory of Dimensions Finite and Infinite, Sigma Ser. in Pure Math., vol. 10 (1995), Heldermann: Heldermann Lemgo, MR MR1363947 (97j:54033) ·Zbl 0872.54002 |
[55] | Farb, B., Relatively hyperbolic groups, Geom. Funct. Anal., 8, 5, 810-840 (1998), MR MR1650094 (99j:20043) ·Zbl 0985.20027 |
[56] | Fedorchuk, V. V.; Levin, M.; Shchepin, E. V., On the Brouwer definition of dimension, Uspekhi Mat. Nauk, 54, 2(326), 193-194 (1999), MR MR1711191 (2000g:54068) ·Zbl 0995.54032 |
[57] | Fujiwara, K.; Whyte, K., A note on spaces of asymptotic dimension 1 |
[58] | Gentimis, T., Asymptotic dimension of finitely presented groups ·Zbl 1192.20029 |
[59] | Grave, B., Asymptotic dimension of coarse spaces, New York J. Math., 12, 249-256 (2006) ·Zbl 1111.20038 |
[60] | Gromov, M., Hyperbolic groups, (Essays in Group Theory. Essays in Group Theory, Math. Sci. Res. Inst. Publ., vol. 8 (1987), Springer: Springer New York), 75-263, MR MR919829 (89e:20070) ·Zbl 0634.20015 |
[61] | Gromov, M., Asymptotic invariants of infinite groups, (Geometric Group Theory, vol. 2. Geometric Group Theory, vol. 2, Sussex, 1991. Geometric Group Theory, vol. 2. Geometric Group Theory, vol. 2, Sussex, 1991, London Math. Soc. Lecture Note Ser., vol. 182 (1993), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 1-295, MR MR1253544 (95m:20041) |
[62] | Gromov, M., Random walk in random groups, Geom. Funct. Anal., 13, 1, 73-146 (2003), MR MR1978492 (2004j:20088a) ·Zbl 1122.20021 |
[63] | Januszkiewicz, T., For Coxeter groups \(z^{| g |}\) is a coefficient of a uniformly bounded representation, Fund. Math., 174, 1, 79-86 (2002), MR MR1925487 (2003f:20061) ·Zbl 1038.20025 |
[64] | T. Januszkiewicz, J. Swiatkowski, Filling invariants in systolic complexes and groups, preprint, 2005; T. Januszkiewicz, J. Swiatkowski, Filling invariants in systolic complexes and groups, preprint, 2005 ·Zbl 1188.20043 |
[65] | Ji, L., Asymptotic dimension and the integral \(K\)-theoretic Novikov conjecture for arithmetic groups, J. Differential Geom., 68, 3, 535-544 (2004), MR MR2144540 (2006c:57025) ·Zbl 1079.55012 |
[66] | L. Ji, Integral Novikov conjecture for S-arithmetic groups, preprint, 2006; L. Ji, Integral Novikov conjecture for S-arithmetic groups, preprint, 2006 |
[67] | Lang, U.; Schlichenmaier, T., Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions, Int. Math. Res. Not., 58, 3625-3655 (2005) ·Zbl 1095.53033 |
[68] | Lebedeva, N., Dimension of products of hyperbolic spaces ·Zbl 1138.55001 |
[69] | Levin, M., Characterizing Nobeling spaces |
[70] | Lyndon, R. C.; Schupp, P. E., Combinatorial Group Theory, Classics Math. (2001), Springer: Springer Berlin, Reprint of the 1977 edition. MR MR1812024 (2001i:20064) ·Zbl 0997.20037 |
[71] | Manin, Y. I., The notion of dimension in geometry and algebra, Bull. Amer. Math. Soc. (NS), 43, 2, 139-161 (2006), (electronic). MR MR2216108 ·Zbl 1096.14001 |
[72] | Manning, J. F., Geometry of pseudocharacters, Geom. Topol., 9, 1147-1185 (2005), (electronic). MR MR2174263 (2006j:57002) ·Zbl 1083.20038 |
[73] | D. Matsnev, The Baum-Connes conjecture and group actions on affine buildings, PhD thesis, Penn State University, 2005; D. Matsnev, The Baum-Connes conjecture and group actions on affine buildings, PhD thesis, Penn State University, 2005 |
[74] | Matsnev, D., Asymptotic dimension of one relator groups ·Zbl 1140.20033 |
[75] | Mazur, H.; Minsky, Y., Geometry of complex of curves I. Hyperbolicity, Invent. Math., 138, 1, 103-149 (1999) ·Zbl 0941.32012 |
[76] | Nagórko, A., Characterization and topological rigidity of Nobeling manifolds ·Zbl 1419.55003 |
[77] | Osin, D., Asymptotic dimension of relatively hyperbolic groups, Int. Math. Res. Not. (35), 2143-2161 (2005), MR MR2181790 ·Zbl 1089.20028 |
[78] | Osin, D. V., Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc., 179, 843 (2006), vi+100. MR MR2182268 ·Zbl 1093.20025 |
[79] | Ostrand, Ph., Dimension of metric spaces and Hilbert’s problem 13, Bull. Amer. Math. Soc., 71, 619-622 (1965) ·Zbl 0134.41805 |
[80] | Ozawa, N., Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math., 330, 8, 691-695 (2000), MR MR1763912 (2001g:22007) ·Zbl 0953.43001 |
[81] | Pol, R., A weakly infinite-dimensional compactum which is not countable-dimensional, Proc. Amer. Math. Soc., 82, 4, 634-636 (1981), MR MR614892 (82f:54059) ·Zbl 0469.54014 |
[82] | Radul, T., On transitive extension of asymptotic dimension ·Zbl 1198.54064 |
[83] | Roe, J., Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc., 104, 497 (1993), x+90. MR MR1147350 (94a:58193) ·Zbl 0780.58043 |
[84] | Roe, J., Lectures on Coarse Geometry, Univ. Lecture Ser., vol. 31 (2003), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI, MR MR2007488 (2004g:53050) ·Zbl 1042.53027 |
[85] | Roe, J., Hyperbolic groups have finite asymptotic dimension, Proc. Amer. Math. Soc., 133, 9, 2489-2490 (2005), (electronic). MR MR2146189 (2005m:20102) ·Zbl 1070.20051 |
[86] | Serre, J.-P., Trees, Springer Monogr. Math. (2003), Springer: Springer Berlin, Translated from the French original by John Stillwell. Corrected 2nd printing of the 1980 English translation. MR MR1954121 (2003m:20032) ·Zbl 1013.20001 |
[87] | Shalom, Y., Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, Acta Math., 192, 119-185 (2004) ·Zbl 1064.43004 |
[88] | Schleimer, S., The end of curve complex ·Zbl 1235.32013 |
[89] | Smith, J., On asymptotic dimension of countable Abelian groups, Topology Appl., 153, 12, 2047-2054 (2006) ·Zbl 1144.20024 |
[90] | Smith, J., The asymptotic dimension of the first Grigorchuk group is infinity, Rev. Mat. Comput., 20, 1, 119-121 (2007) ·Zbl 1133.20033 |
[91] | Spież, S., Imbeddings in \(R^{2 m}\) of \(m\)-dimensional compacta with \(\dim(X \times X) < 2 m\), Fund. Math., 134, 2, 105-115 (1990), MR MR1074638 (91j:54062) ·Zbl 0715.54028 |
[92] | Sternfeld, Y., Hilbert’s 13th problem and dimension, Lecture Notes in Math., 1376, 1-49 (1989) ·Zbl 0674.01015 |
[93] | Sauer, R., Homological invariants and quasi-isometry, Geom. Funct. Anal., 16, 476-515 (2006) ·Zbl 1173.20032 |
[94] | Yu, G., The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. (2), 147, 2, 325-355 (1998), MR MR1626745 (99k:57072) ·Zbl 0911.19001 |
[95] | Yu, G., The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., 139, 1, 201-240 (2000), MR MR1728880 (2000j:19005) ·Zbl 0956.19004 |