Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

An extension problem related to the fractional Laplacian.(English)Zbl 1143.26002

The authors relate the fractional Laplacian of a function \(f: \mathbb{R}^{n}\rightarrow \mathbb{R}\) to solutions \(u:\mathbb{R}^{n}\times [0,\infty )\rightarrow \mathbb{R}\) of the extension problem \[ \left\{ \begin{matrix} u(x,0)=f(x) \\ \Delta _{x}u+\frac{a}{y}u_{y}+u_{yy}=0. \end{matrix} \right. \] It is shown that \[ \lim_{y\rightarrow 0}y^{a}u_{y}(x,y)=u_{z}(x,0)=-(-\Delta )^{s}f(x) \] where \(s=\frac{1-a}{2}\) and \(z=\left( \frac{y}{1-a}\right) ^{1-a}.\) This work extends the well-known fact that the operator \((-\Delta )^{1/2}\) can be obtained from the harmonic extension problem to the upper half space as the operator that maps the Dirichlet boundary condition to the Neumann condition. Therefore, the present work generalizes this characterization to general fractional powers of the Laplacian. This is also done for other integro-differential operators and some properties of these integro-differential equations are derived.

MSC:

26A33 Fractional derivatives and integrals
35J70 Degenerate elliptic equations

Cite

References:

[1]Almgren F. J., Almgren’s Big Regularity Paper (2000) ·Zbl 0985.49001
[2]Athanasopoulos I., Amer. J. Math.
[3]Bogdan K., Studia Math. 123 pp 43– (1997)
[4]DOI: 10.1353/ajm.1997.0010 ·Zbl 0878.35039 ·doi:10.1353/ajm.1997.0010
[5]DOI: 10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A ·Zbl 0854.35032 ·doi:10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A
[6]Fabes E., Ann. Inst. Fourier (Grenoble) 32 pp 151– (1982) ·Zbl 0488.35034 ·doi:10.5802/aif.883
[7]DOI: 10.1080/03605308208820218 ·Zbl 0498.35042 ·doi:10.1080/03605308208820218
[8]Fabes , E. B. , Kenig , C. E. , Jerison , D. ( 1983 ). Boundary behavior of solutions to degenerate elliptic equations . In Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vols. I, II. (Chicago, Ill., 1981), Wadsworth Math. Ser. Belmont , CA : Wadsworth , pp. 577 – 589 .
[9]Landkof N. S., Foundations of Modern Potential Theory. (1972) ·Zbl 0253.31001 ·doi:10.1007/978-3-642-65183-0
[10]DOI: 10.1080/00036818308839425 ·Zbl 0513.35013 ·doi:10.1080/00036818308839425
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp