Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Moduli of objects in dg-categories.(English)Zbl 1140.18005

The paper begins a research about moduli spaces (or stacks) of objects in a triangulated category of geometric or algebraic origin. It proves the existence of an algebraic moduli classifying objects in a given triangulated category satisfying some finiteness conditions and having a dg-enhancement.
To any dg-category \({\mathcal T}\) (i.e., a set of objects together with complexes of morphisms between two objects, the composition preserving the linear and differential structures) a stack \(M\) is associated. This one classifies compact objects in the triangulated category associated to \({\mathcal T}\) when \({\mathcal T}\) is saturated. Under some finiteness conditions on \({\mathcal T}\), \(M\) is locally geometric.
From that the algebraicity of the group of auto-equivalences of saturated dg-categories and the existence of reasonable moduli for perfect complexes on a smooth and proper scheme are proved.

MSC:

18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
18D20 Enriched categories (over closed or monoidal categories)
18E30 Derived categories, triangulated categories (MSC2010)
18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)
18D99 Categorical structures

Cite

References:

[1]Anel M ., Toën B ., Dénombrabilité des classes d’équivalences dérivées des variétés algébriques, J. Algebraic Geom. , submitted for publication. ·Zbl 1184.14027 ·doi:10.1090/S1056-3911-08-00487-6
[2]Bondal A. , Kapranov M. , Enhanced triangulated categories , Math. USSR Sbornik 70 ( 1991 ) 93 - 107 . MR 1055981 | Zbl 0729.18008 ·Zbl 0729.18008 ·doi:10.1070/SM1991v070n01ABEH001253
[3]Bondal A. , Van Den Bergh M. , Generators and representability of functors in commutative and non-commutative geometry , Mosc. Math. J. 3 ( 1 ) ( 2003 ) 1 - 36 . MR 1996800 | Zbl 1135.18302 ·Zbl 1135.18302
[4]Ciocan-Fontanine I. , Kapranov M. , Derived Hilbert schemes , J. Amer. Math. Soc. 15 ( 4 ) ( 2002 ) 787 - 815 . MR 1915819 | Zbl 1074.14003 ·Zbl 1074.14003 ·doi:10.1090/S0894-0347-02-00399-5
[5]Gorski J. , Representability of derived Quot functor, in preparation.
[6]Hinich V. , DG coalgebras as formal stacks , J. Pure Appl. Algebra 162 ( 2-3 ) ( 2001 ) 209 - 250 . Zbl 1020.18007 ·Zbl 1020.18007 ·doi:10.1016/S0022-4049(00)00121-3
[7]Hirschhorn P. , Model Categories and Their Localizations , Math. Surveys and Monographs , vol. 99 , Amer. Math. Soc. , Providence , 2003 . MR 1944041 | Zbl 1017.55001 ·Zbl 1017.55001
[8]Hirschowitz A. , Simpson C. , Descente pour les n -champs , math.AG/9807049 .
[9]Hovey M. , Model Categories , Mathematical Surveys and Monographs , vol. 63 , Amer. Math. Soc. , Providence , 1998 . MR 1650134 | Zbl 0909.55001 ·Zbl 0909.55001
[10]Hovey M. , Model category structures on chain complexes of sheaves , Trans. Amer. Math. Soc. 353 ( 6 ) ( 2001 ) 2441 - 2457 . MR 1814077 | Zbl 0969.18010 ·Zbl 0969.18010 ·doi:10.1090/S0002-9947-01-02721-0
[11]Inaba M. , Toward a definition of moduli of complexes of coherent sheaves on a projective scheme , J. Math. Kyoto Univ. 42 ( 2 ) ( 2002 ) 317 - 329 . Article | MR 1966840 | Zbl 1063.14013 ·Zbl 1063.14013
[12]Joyce D. , Configurations in abelian categories. II. Ringel-Hall algebras , Adv. Math. 210 ( 2 ) ( 2007 ) 635 - 706 . Zbl 1119.14005 ·Zbl 1119.14005 ·doi:10.1016/j.aim.2006.07.006
[13]Kapranov M. , Injective resolutions of BG and derived moduli spaces of local systems , J. Pure Appl. Algebra 155 ( 2-3 ) ( 2001 ) 167 - 179 . Zbl 0972.18012 ·Zbl 0972.18012 ·doi:10.1016/S0022-4049(99)00109-7
[14]Keller B. , On differential graded categories , in: International Congress of Mathematicians , vol. II , Eur. Math. Soc. , Zürich , 2006 , pp. 151 - 190 . MR 2275593 | Zbl pre05057393 ·Zbl 1140.18008
[15]Kontsevich M. , Enumeration of rational curves via torus actions. The moduli space of curves , in: Progr. Math. , vol. 129 , Birkhäuser , Boston, MA , 1995 , pp. 335 - 368 . MR 1363062 | Zbl 0885.14028 ·Zbl 0885.14028
[16]Kontsevich M. , Soibelmann Y. , Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I , math.RA/0606241 .
[17]Laumon G. , Moret-Bailly L. , Champs algébriques , A Series of Modern Surveys in Mathematics , vol. 39 , Springer-Verlag , 2000 . MR 1771927 ·Zbl 0945.14005
[18]Lazarev A. , Homotopy theory of \({A}_{\infty }\) ring spectra and applications to MU -modules , K-Theory 24 ( 3 ) ( 2001 ) 243 - 281 . MR 1876800 | Zbl 1008.55007 ·Zbl 1008.55007 ·doi:10.1023/A:1013394125552
[19]Lieblich M. , Moduli of complexes on a proper morphism , J. Algebraic Geom. 15 ( 2006 ) 175 - 206 . MR 2177199 | Zbl 1085.14015 ·Zbl 1085.14015 ·doi:10.1090/S1056-3911-05-00418-2
[20]Lurie J. , Derived algebraic geometry , Ph.D. thesis, unpublished, available at, http://www.math.harvard.edu/ lurie/ .
[21]Neeman A. , Triangulated Categories , Annals of Mathematics Studies , vol. 148 , Princeton University Press , Princeton, NJ , 2001 , viii+449 pp. MR 1812507 | Zbl 0974.18008 ·Zbl 0974.18008
[22]Rezk C. , A model for the homotopy theory of homotopy theories , Trans. Amer. Math. Soc. 353 ( 3 ) ( 2001 ) 973 - 1007 . MR 1804411 | Zbl 0961.18008 ·Zbl 0961.18008 ·doi:10.1090/S0002-9947-00-02653-2
[23]Schwede S. , Shipley B. , Algebras and modules in monoidal model categories , Proc. London Math. Soc. (3) 80 ( 2000 ) 491 - 511 . MR 1734325 | Zbl 1026.18004 ·Zbl 1026.18004 ·doi:10.1112/S002461150001220X
[24]Schwede S. , Shipley B. , Stable model categories are categories of modules , Topology 42 ( 1 ) ( 2003 ) 103 - 153 . MR 1928647 | Zbl 1013.55005 ·Zbl 1013.55005 ·doi:10.1016/S0040-9383(02)00006-X
[25]Schwede S. , Shipley B. , Equivalences of monoidal model categories , Algebraic Geom. Topol. 3 ( 2003 ) 287 - 334 . MR 1997322 | Zbl 1028.55013 ·Zbl 1028.55013 ·doi:10.2140/agt.2003.3.287
[26]Demazure M. , Grothendieck A. , Schémas en groupes. I: Propriétés générales des schémas en groupes (SGA 3-1) , in: Lecture Notes in Mathematics , vol. 151 , Springer-Verlag , Berlin-New York , 1970 , xv+564 pp. Zbl 0207.51401 ·Zbl 0207.51401 ·doi:10.1007/BFb0058993
[27]Simpson C. , Algebraic (geometric) n -stacks , math.AG/9609014 .
[28]Tabuada G. , Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories , C. R. Acad. Sci. Paris 340 ( 2005 ) 15 - 19 . MR 2112034 | Zbl 1060.18010 ·Zbl 1060.18010 ·doi:10.1016/j.crma.2004.11.007
[29]Thomas R. , A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K 3 fibrations , J. Differential Geom. 54 ( 2 ) ( 2000 ) 367 - 438 . Zbl 1034.14015 ·Zbl 1034.14015
[30]Toën B. , The homotopy theory of dg-categories and derived Morita theory , Invent. Math. 167 ( 3 ) ( 2007 ) 615 - 667 . MR 2276263 | Zbl 1118.18010 ·Zbl 1118.18010 ·doi:10.1007/s00222-006-0025-y
[31]Toën B. , Derived Hall algebras , Duke Math. J. 135 ( 3 ) ( 2006 ) 587 - 615 . Article | MR 2272977 | Zbl 1117.18011 ·Zbl 1117.18011 ·doi:10.1215/S0012-7094-06-13536-6
[32]Toën B. , Higher and derived stacks: a global overview , math.AG/0604504 . ·Zbl 1183.14001
[33]Toën B. , Vaquié M. , Algébrisation des variétés analytiques complexes et catégories dérivées , math.AG/0703555 . ·Zbl 1158.14005
[34]Toën B. , Vezzosi G. , Homotopical algebraic geometry I: Topos theory , Adv. in Math. 193 ( 2005 ) 257 - 372 . MR 2137288 | Zbl 1120.14012 ·Zbl 1120.14012 ·doi:10.1016/j.aim.2004.05.004
[35]Toën, B., Vezzosi, G. , Homotopical algebraic geometry II: Geometric stacks and applications, Mem. Amer. Math. Soc ., in press. MR 2394633 | Zbl pre05272191 ·Zbl 1145.14003
[36]Toën B. , Vezzosi G. , From HAG to DAG: derived moduli spaces , in: Greenlees J.P.C. (Ed.), Axiomatic, Enriched and Motivic Homotopy Theory , Proceedings of the NATO Advanced Study Institute, Cambridge, UK (9-20 September 2002) , NATO Science Series II , vol. 131 , Kluwer , 2004 , pp. 175 - 218 . Zbl 1076.14002 ·Zbl 1076.14002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp