[1] | Anel M ., Toën B ., Dénombrabilité des classes d’équivalences dérivées des variétés algébriques, J. Algebraic Geom. , submitted for publication. ·Zbl 1184.14027 ·doi:10.1090/S1056-3911-08-00487-6 |
[2] | Bondal A. , Kapranov M. , Enhanced triangulated categories , Math. USSR Sbornik 70 ( 1991 ) 93 - 107 . MR 1055981 | Zbl 0729.18008 ·Zbl 0729.18008 ·doi:10.1070/SM1991v070n01ABEH001253 |
[3] | Bondal A. , Van Den Bergh M. , Generators and representability of functors in commutative and non-commutative geometry , Mosc. Math. J. 3 ( 1 ) ( 2003 ) 1 - 36 . MR 1996800 | Zbl 1135.18302 ·Zbl 1135.18302 |
[4] | Ciocan-Fontanine I. , Kapranov M. , Derived Hilbert schemes , J. Amer. Math. Soc. 15 ( 4 ) ( 2002 ) 787 - 815 . MR 1915819 | Zbl 1074.14003 ·Zbl 1074.14003 ·doi:10.1090/S0894-0347-02-00399-5 |
[5] | Gorski J. , Representability of derived Quot functor, in preparation. |
[6] | Hinich V. , DG coalgebras as formal stacks , J. Pure Appl. Algebra 162 ( 2-3 ) ( 2001 ) 209 - 250 . Zbl 1020.18007 ·Zbl 1020.18007 ·doi:10.1016/S0022-4049(00)00121-3 |
[7] | Hirschhorn P. , Model Categories and Their Localizations , Math. Surveys and Monographs , vol. 99 , Amer. Math. Soc. , Providence , 2003 . MR 1944041 | Zbl 1017.55001 ·Zbl 1017.55001 |
[8] | Hirschowitz A. , Simpson C. , Descente pour les n -champs , math.AG/9807049 . |
[9] | Hovey M. , Model Categories , Mathematical Surveys and Monographs , vol. 63 , Amer. Math. Soc. , Providence , 1998 . MR 1650134 | Zbl 0909.55001 ·Zbl 0909.55001 |
[10] | Hovey M. , Model category structures on chain complexes of sheaves , Trans. Amer. Math. Soc. 353 ( 6 ) ( 2001 ) 2441 - 2457 . MR 1814077 | Zbl 0969.18010 ·Zbl 0969.18010 ·doi:10.1090/S0002-9947-01-02721-0 |
[11] | Inaba M. , Toward a definition of moduli of complexes of coherent sheaves on a projective scheme , J. Math. Kyoto Univ. 42 ( 2 ) ( 2002 ) 317 - 329 . Article | MR 1966840 | Zbl 1063.14013 ·Zbl 1063.14013 |
[12] | Joyce D. , Configurations in abelian categories. II. Ringel-Hall algebras , Adv. Math. 210 ( 2 ) ( 2007 ) 635 - 706 . Zbl 1119.14005 ·Zbl 1119.14005 ·doi:10.1016/j.aim.2006.07.006 |
[13] | Kapranov M. , Injective resolutions of BG and derived moduli spaces of local systems , J. Pure Appl. Algebra 155 ( 2-3 ) ( 2001 ) 167 - 179 . Zbl 0972.18012 ·Zbl 0972.18012 ·doi:10.1016/S0022-4049(99)00109-7 |
[14] | Keller B. , On differential graded categories , in: International Congress of Mathematicians , vol. II , Eur. Math. Soc. , Zürich , 2006 , pp. 151 - 190 . MR 2275593 | Zbl pre05057393 ·Zbl 1140.18008 |
[15] | Kontsevich M. , Enumeration of rational curves via torus actions. The moduli space of curves , in: Progr. Math. , vol. 129 , Birkhäuser , Boston, MA , 1995 , pp. 335 - 368 . MR 1363062 | Zbl 0885.14028 ·Zbl 0885.14028 |
[16] | Kontsevich M. , Soibelmann Y. , Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I , math.RA/0606241 . |
[17] | Laumon G. , Moret-Bailly L. , Champs algébriques , A Series of Modern Surveys in Mathematics , vol. 39 , Springer-Verlag , 2000 . MR 1771927 ·Zbl 0945.14005 |
[18] | Lazarev A. , Homotopy theory of \({A}_{\infty }\) ring spectra and applications to MU -modules , K-Theory 24 ( 3 ) ( 2001 ) 243 - 281 . MR 1876800 | Zbl 1008.55007 ·Zbl 1008.55007 ·doi:10.1023/A:1013394125552 |
[19] | Lieblich M. , Moduli of complexes on a proper morphism , J. Algebraic Geom. 15 ( 2006 ) 175 - 206 . MR 2177199 | Zbl 1085.14015 ·Zbl 1085.14015 ·doi:10.1090/S1056-3911-05-00418-2 |
[20] | Lurie J. , Derived algebraic geometry , Ph.D. thesis, unpublished, available at, http://www.math.harvard.edu/ lurie/ . |
[21] | Neeman A. , Triangulated Categories , Annals of Mathematics Studies , vol. 148 , Princeton University Press , Princeton, NJ , 2001 , viii+449 pp. MR 1812507 | Zbl 0974.18008 ·Zbl 0974.18008 |
[22] | Rezk C. , A model for the homotopy theory of homotopy theories , Trans. Amer. Math. Soc. 353 ( 3 ) ( 2001 ) 973 - 1007 . MR 1804411 | Zbl 0961.18008 ·Zbl 0961.18008 ·doi:10.1090/S0002-9947-00-02653-2 |
[23] | Schwede S. , Shipley B. , Algebras and modules in monoidal model categories , Proc. London Math. Soc. (3) 80 ( 2000 ) 491 - 511 . MR 1734325 | Zbl 1026.18004 ·Zbl 1026.18004 ·doi:10.1112/S002461150001220X |
[24] | Schwede S. , Shipley B. , Stable model categories are categories of modules , Topology 42 ( 1 ) ( 2003 ) 103 - 153 . MR 1928647 | Zbl 1013.55005 ·Zbl 1013.55005 ·doi:10.1016/S0040-9383(02)00006-X |
[25] | Schwede S. , Shipley B. , Equivalences of monoidal model categories , Algebraic Geom. Topol. 3 ( 2003 ) 287 - 334 . MR 1997322 | Zbl 1028.55013 ·Zbl 1028.55013 ·doi:10.2140/agt.2003.3.287 |
[26] | Demazure M. , Grothendieck A. , Schémas en groupes. I: Propriétés générales des schémas en groupes (SGA 3-1) , in: Lecture Notes in Mathematics , vol. 151 , Springer-Verlag , Berlin-New York , 1970 , xv+564 pp. Zbl 0207.51401 ·Zbl 0207.51401 ·doi:10.1007/BFb0058993 |
[27] | Simpson C. , Algebraic (geometric) n -stacks , math.AG/9609014 . |
[28] | Tabuada G. , Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories , C. R. Acad. Sci. Paris 340 ( 2005 ) 15 - 19 . MR 2112034 | Zbl 1060.18010 ·Zbl 1060.18010 ·doi:10.1016/j.crma.2004.11.007 |
[29] | Thomas R. , A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K 3 fibrations , J. Differential Geom. 54 ( 2 ) ( 2000 ) 367 - 438 . Zbl 1034.14015 ·Zbl 1034.14015 |
[30] | Toën B. , The homotopy theory of dg-categories and derived Morita theory , Invent. Math. 167 ( 3 ) ( 2007 ) 615 - 667 . MR 2276263 | Zbl 1118.18010 ·Zbl 1118.18010 ·doi:10.1007/s00222-006-0025-y |
[31] | Toën B. , Derived Hall algebras , Duke Math. J. 135 ( 3 ) ( 2006 ) 587 - 615 . Article | MR 2272977 | Zbl 1117.18011 ·Zbl 1117.18011 ·doi:10.1215/S0012-7094-06-13536-6 |
[32] | Toën B. , Higher and derived stacks: a global overview , math.AG/0604504 . ·Zbl 1183.14001 |
[33] | Toën B. , Vaquié M. , Algébrisation des variétés analytiques complexes et catégories dérivées , math.AG/0703555 . ·Zbl 1158.14005 |
[34] | Toën B. , Vezzosi G. , Homotopical algebraic geometry I: Topos theory , Adv. in Math. 193 ( 2005 ) 257 - 372 . MR 2137288 | Zbl 1120.14012 ·Zbl 1120.14012 ·doi:10.1016/j.aim.2004.05.004 |
[35] | Toën, B., Vezzosi, G. , Homotopical algebraic geometry II: Geometric stacks and applications, Mem. Amer. Math. Soc ., in press. MR 2394633 | Zbl pre05272191 ·Zbl 1145.14003 |
[36] | Toën B. , Vezzosi G. , From HAG to DAG: derived moduli spaces , in: Greenlees J.P.C. (Ed.), Axiomatic, Enriched and Motivic Homotopy Theory , Proceedings of the NATO Advanced Study Institute, Cambridge, UK (9-20 September 2002) , NATO Science Series II , vol. 131 , Kluwer , 2004 , pp. 175 - 218 . Zbl 1076.14002 ·Zbl 1076.14002 |