17B37 | Quantum groups (quantized enveloping algebras) and related deformations |
81R10 | Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations |
81R12 | Groups and algebras in quantum theory and relations with integrable systems |
[1] | Albert T.D., Boss H., Flume R. and Ruhlig K. (2000). Resolution of the nested hierarchy for rational \({\mathfrak{sl}}(n)\) models. J. Phys. A 33: 4963–4980 ·Zbl 0957.82002 ·doi:10.1088/0305-4470/33/28/302 |
[2] | Babudjian H and Flume R. (1994). Off-shell Bethe Ansatz equation for Gaudin magnets and solution of Knizhnik-Zamolodchikov equation. Mod. Phys. Lett. A 9: 2029–2040 ·Zbl 1020.82542 ·doi:10.1142/S0217732394001891 |
[3] | Beck, J.: Braid group action and quantum affine algebras. Commun. Math. Phys. 165, 555–568 (1994); Convex bases of PBW type for quantum affine algebras. Commun. Math. Phys. 165, 193–199 (1994) ·Zbl 0807.17013 |
[4] | Chari, V., Pressley, A.: Quantum affine algebras and their representations. In: Representations of groups, CMS Conf. Proc. 16, 1994, Providence, RI: Amer. Math. Soc., 1995, pp. 59–78 ·Zbl 0855.17009 |
[5] | Damiani I. (1998). La R-matrice pour les algèbres quantiques de type affine non tordu. Ann. Scient. Éc. Norm. Sup. 31(4): 493–523 ·Zbl 0911.17005 |
[6] | Ding J. and Khoroshkin S. (2000). Weyl group extension of quantized current algebras. Transform. Groups 5(1): 35–59 ·Zbl 1018.17010 ·doi:10.1007/BF01237177 |
[7] | Ding J., Khoroshkin S. and Pakuliak S. (2000). Factorization of the universal R-matrix for \(U_q(\widehat{{{\mathfrak{sl}}}}_2)\) . Theor. and Math. Phys. 124(2): 1007–1036 ·Zbl 1112.17300 ·doi:10.1007/BF02551074 |
[8] | Ding J., Khoroshkin S. and Pakuliak S. (2000). Integral presentations for the universal R-matrix. Lett. Math. Phys. 53(2): 121–141 ·Zbl 1066.17501 ·doi:10.1023/A:1026730817516 |
[9] | Ding J. and Frenkel I.B. (1993). Isomorphism of two realizations of quantum affine algebra \(U_q(\widehat{{{\mathfrak{gl}}}}_N)\) . Commun. Math. Phys. 156(2): 277–300 ·Zbl 0786.17008 ·doi:10.1007/BF02098484 |
[10] | Drinfeld, V.: Quantum groups. In: Proc. ICM Berkeley (1986), Vol. 1, Providence, RI: Amer. Math. Soc., 1987, pp. 789–820 |
[11] | Drinfeld V. (1988). New realization of Yangians and quantum affine algebras. Sov. Math. Dokl. 36: 212–216 ·Zbl 0667.16004 |
[12] | Enriquez B. (2000). On correlation functions of Drinfeld currents and shuffle algebras. Transform. Groups 5(2): 111–120 ·Zbl 0998.17019 ·doi:10.1007/BF01236465 |
[13] | Enriquez B. (2003). Quasi-Hopf algebras associated with semisimple Lie algebras and complex curves. Selecta Math. (N.S.) 9(1): 1–61 ·Zbl 1071.17011 ·doi:10.1007/s00029-003-0317-7 |
[14] | Enriquez B. and Felder G. (1998). Elliptic quantum groups \(E_{\tau,\eta}({{\mathfrak{sl}}}_2)\) . Commun. Math. Phys. 195(3): 651–689 ·Zbl 0959.17013 ·doi:10.1007/s002200050407 |
[15] | Enriquez B. and Rubtsov V. (1999). Quasi-Hopf algebras associated with \({\mathfrak{sl}}_2\) and complex curves. Israel J. Math. 112: 61–108 ·Zbl 1050.17011 ·doi:10.1007/BF02773478 |
[16] | Kassel C. (1995). Quantum Groups. Springer, Berlin-Heidelberg-New York ·Zbl 0808.17003 |
[17] | Khoroshkin S. and Pakuliak S. (2005). Weight function for \(U_q(\widehat{{\mathfrak{sl}}}_3)\) . Theor. and Math. Phys. 145(1): 1373–1399 ·Zbl 1178.17016 ·doi:10.1007/s11232-005-0167-x |
[18] | Khoroshkin, S., Pakuliak, S.: Method of projections for an universal weight function of the quantum affine algebra \(U_q(\widehat{{\mathfrak{sl}}}_{N+1})\) . In: Proceedings of the International Workshop Classical and quantum integrable systems, January 23–26, 2006, Protvino. Theor. and Math. Phys. 150 (2), 244–258 (2007) ·Zbl 1118.81040 |
[19] | Khoroshkin S., Pakuliak S. and Tarasov V. (2007). Off-shell Bethe vectors and Drinfeld currents. J. Geom. Phys. 57: 1713–1732 ·Zbl 1148.17010 ·doi:10.1016/j.geomphys.2007.02.005 |
[20] | Khoroshkin, S., Tolstoy, V.: Twisting of quantum (super)algebras. Connection of Drinfeld’s and Cartan-Weyl realizations for quantum affine algebras. MPI Preprint MPI/94-23, http://arxiv.org/lis/hepth/9404036 , 1994 |
[21] | Khoroshkin, S., Tolstoy, V.: The Cartan-Weyl basis and the universal \({\mathcal{R}}\) -matrix for quantum Kac-Moody algebras and superalgebras. In: Quantum Symmetries, River Edge, NJ: World Sci. Publ. 1993, pp. 336–351 |
[22] | Khoroshkin S. and Tolstoy V.N. (1993). On Drinfeld realization of quantum affine algebras. J. Geom. Phys. 11(1–4): 445–452 ·Zbl 0784.17022 ·doi:10.1016/0393-0440(93)90070-U |
[23] | Kulish P. and Reshetikhin N. (1983). Diagonalization of GL(N)-invariant transfer matrices and quantum N-wave system (Lee model). J. Phys. A: Math. Gen. 16: L591–L596 ·Zbl 0545.35082 ·doi:10.1088/0305-4470/16/16/001 |
[24] | Lusztig G. (1993). Introduction to quantum groups. Birkhäuser, Basel ·Zbl 0788.17010 |
[25] | Reshetikhin N. (1985). Integrable models of one-dimensional quantum magnets with the \({\mathfrak{o}}(n)\) and \({\mathfrak{sp}}(2k)\) symmetry. Theor. Math. Phys. 63: 347–366 |
[26] | Reshetikhin N. and Semenov-Tian-Shansky M. (1990). Central extensions of quantum current groups. Lett. Math. Phys. 19(2): 133–142 ·Zbl 0692.22011 ·doi:10.1007/BF01045884 |
[27] | Smirnov, F.: Form factors in completely integrable models of quantum field theory. Adv. Series in Math. Phys., Vol. 14, Singapore: World Scientific, 1992 ·Zbl 0788.46077 |
[28] | Sweedler, M.E.: Hopf Algebras. Reading, Ma: Addison-Wesley, 1969 ·Zbl 0194.32901 |
[29] | Tarasov V.O. (1988). An algebraic Bethe ansatz for the Izergin-Korepin R-matrix. Theor. and Math. Phys. 76(2): 793–804 ·doi:10.1007/BF01028578 |
[30] | Tarasov V. and Varchenko A. (1995). Jackson integrals for the solutions to Knizhnik-Zamolodchikov equation. St. Petersburg Math. J. 6(2): 275–313 ·Zbl 0902.39002 |
[31] | Tarasov V. and Varchenko A. (1997). Geometry of q-hypergeometric functions, quantum affine algebras and elliptic quantum groups. Astérisque 246: 1–135 ·Zbl 0938.17012 |