Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Weight functions and Drinfeld currents.(English)Zbl 1140.17010

The nested Bethe ansatz consists in the construction of certain rational functions with values in a representation of a quantum affine algebra or its rational or elliptic analogue. In [P. P. Kulish andN. Yu. Reshetikhin, J. Phys. A 16, L591–L596 (1983;Zbl 0545.35082)] by induction procedure it is proved that for the quantum affine algebra \(U_q(\widehat{gl}_N)\) these rational functions called the off-shell Bethe vectors have the form of the product of the monodromy matrices (a generating series for elements of the algebra) and a highest weight vector of a finite-dimensional representation of the corresponding \(U_q\). Such products defines a weight function for a quantum affine algebra.
The goal of the paper is to give a direct construction of weight functions, independent of an inductive procedure. The authors introduce the notion of a universal weight function as a family of functions with values in a quotient of its Borel subalgebra, satisfying certain coalgebraic properties. The action of the universal weight function on the highest weight vector defines a weight function with values in a representation of the quantum affine algebra.
The quantum affine algebras, as well as affine Kac-Moody Lie algebras, admit two different realizations. One is based on the description of the quantum affine algebra by means of Chevalley generators, satisfying \(q\)-analogues of the defining relations for Kac-Moody Lie algebras. In the other, generators are the components of the Drinfeld currents, and the relations are the deformations of the loop algebra presentation of the affine Lie algebra. The quantum affine algebra is equipped with two coproducts: standard and “Drinfeld”. It is proved in [S. Khoroshkin andV. Tolstoy, The Cartan-Weyl basis and the universal \({\mathcal R}\)-matrix for quantum Kac-Moody algebras and superalgebras. In: Quantum Symmetries, River Edge, NJ: World Sci. Publ. 1993, pp. 336–351 (1993), J. Geom. Phys. 11, 445–452 (1993;Zbl 0784.17022),J. Beck, Commun. Math. Phys. 165, No .3, 555–568 (1994;Zbl 0807.17013),I. Damiani, Ann. Sci. Éc. Norm. Supér. (4) 31, No. 4, 493–523 (1998;Zbl 0911.17005),J. Ding, S. Pakulyak andS. Khoroshkin, Theor. Math. Phys. 124, No. 2, 1007–1037 (2000); translation from Teor. Mat. Fiz. 124, No. 2, 179–214 (2000;Zbl 1112.17300)] that these coproducts are related by a twist. In correspondence with these structures the weight functions have different construction. Each realization determines a decomposition of the algebra as the product of two opposite Borel subalgebras (so there are four subalgebras). So, each Borel subalgebra decomposes as the product of intersections with two Borel subalgebras of the other type, and determines two projection operators which map it to these intersections. By means of these projections the twist is defined.
In the paper under review the authors give a new topological proof of these results. The main result of the paper is Theorem 3, that says that collection of images of products of Drinfeld currents by the projection defines a universal weight function. This allows to compute the weight function in some particular cases using techniques of complex analysis and conformal algebras. A conjecture on the general form of the universal weight function is given and some results from this conjecture for finite dimensional modules are proposed.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81R12 Groups and algebras in quantum theory and relations with integrable systems

Cite

References:

[1]Albert T.D., Boss H., Flume R. and Ruhlig K. (2000). Resolution of the nested hierarchy for rational \({\mathfrak{sl}}(n)\) models. J. Phys. A 33: 4963–4980 ·Zbl 0957.82002 ·doi:10.1088/0305-4470/33/28/302
[2]Babudjian H and Flume R. (1994). Off-shell Bethe Ansatz equation for Gaudin magnets and solution of Knizhnik-Zamolodchikov equation. Mod. Phys. Lett. A 9: 2029–2040 ·Zbl 1020.82542 ·doi:10.1142/S0217732394001891
[3]Beck, J.: Braid group action and quantum affine algebras. Commun. Math. Phys. 165, 555–568 (1994); Convex bases of PBW type for quantum affine algebras. Commun. Math. Phys. 165, 193–199 (1994) ·Zbl 0807.17013
[4]Chari, V., Pressley, A.: Quantum affine algebras and their representations. In: Representations of groups, CMS Conf. Proc. 16, 1994, Providence, RI: Amer. Math. Soc., 1995, pp. 59–78 ·Zbl 0855.17009
[5]Damiani I. (1998). La R-matrice pour les algèbres quantiques de type affine non tordu. Ann. Scient. Éc. Norm. Sup. 31(4): 493–523 ·Zbl 0911.17005
[6]Ding J. and Khoroshkin S. (2000). Weyl group extension of quantized current algebras. Transform. Groups 5(1): 35–59 ·Zbl 1018.17010 ·doi:10.1007/BF01237177
[7]Ding J., Khoroshkin S. and Pakuliak S. (2000). Factorization of the universal R-matrix for \(U_q(\widehat{{{\mathfrak{sl}}}}_2)\) . Theor. and Math. Phys. 124(2): 1007–1036 ·Zbl 1112.17300 ·doi:10.1007/BF02551074
[8]Ding J., Khoroshkin S. and Pakuliak S. (2000). Integral presentations for the universal R-matrix. Lett. Math. Phys. 53(2): 121–141 ·Zbl 1066.17501 ·doi:10.1023/A:1026730817516
[9]Ding J. and Frenkel I.B. (1993). Isomorphism of two realizations of quantum affine algebra \(U_q(\widehat{{{\mathfrak{gl}}}}_N)\) . Commun. Math. Phys. 156(2): 277–300 ·Zbl 0786.17008 ·doi:10.1007/BF02098484
[10]Drinfeld, V.: Quantum groups. In: Proc. ICM Berkeley (1986), Vol. 1, Providence, RI: Amer. Math. Soc., 1987, pp. 789–820
[11]Drinfeld V. (1988). New realization of Yangians and quantum affine algebras. Sov. Math. Dokl. 36: 212–216 ·Zbl 0667.16004
[12]Enriquez B. (2000). On correlation functions of Drinfeld currents and shuffle algebras. Transform. Groups 5(2): 111–120 ·Zbl 0998.17019 ·doi:10.1007/BF01236465
[13]Enriquez B. (2003). Quasi-Hopf algebras associated with semisimple Lie algebras and complex curves. Selecta Math. (N.S.) 9(1): 1–61 ·Zbl 1071.17011 ·doi:10.1007/s00029-003-0317-7
[14]Enriquez B. and Felder G. (1998). Elliptic quantum groups \(E_{\tau,\eta}({{\mathfrak{sl}}}_2)\) . Commun. Math. Phys. 195(3): 651–689 ·Zbl 0959.17013 ·doi:10.1007/s002200050407
[15]Enriquez B. and Rubtsov V. (1999). Quasi-Hopf algebras associated with \({\mathfrak{sl}}_2\) and complex curves. Israel J. Math. 112: 61–108 ·Zbl 1050.17011 ·doi:10.1007/BF02773478
[16]Kassel C. (1995). Quantum Groups. Springer, Berlin-Heidelberg-New York ·Zbl 0808.17003
[17]Khoroshkin S. and Pakuliak S. (2005). Weight function for \(U_q(\widehat{{\mathfrak{sl}}}_3)\) . Theor. and Math. Phys. 145(1): 1373–1399 ·Zbl 1178.17016 ·doi:10.1007/s11232-005-0167-x
[18]Khoroshkin, S., Pakuliak, S.: Method of projections for an universal weight function of the quantum affine algebra \(U_q(\widehat{{\mathfrak{sl}}}_{N+1})\) . In: Proceedings of the International Workshop Classical and quantum integrable systems, January 23–26, 2006, Protvino. Theor. and Math. Phys. 150 (2), 244–258 (2007) ·Zbl 1118.81040
[19]Khoroshkin S., Pakuliak S. and Tarasov V. (2007). Off-shell Bethe vectors and Drinfeld currents. J. Geom. Phys. 57: 1713–1732 ·Zbl 1148.17010 ·doi:10.1016/j.geomphys.2007.02.005
[20]Khoroshkin, S., Tolstoy, V.: Twisting of quantum (super)algebras. Connection of Drinfeld’s and Cartan-Weyl realizations for quantum affine algebras. MPI Preprint MPI/94-23, http://arxiv.org/lis/hepth/9404036 , 1994
[21]Khoroshkin, S., Tolstoy, V.: The Cartan-Weyl basis and the universal \({\mathcal{R}}\) -matrix for quantum Kac-Moody algebras and superalgebras. In: Quantum Symmetries, River Edge, NJ: World Sci. Publ. 1993, pp. 336–351
[22]Khoroshkin S. and Tolstoy V.N. (1993). On Drinfeld realization of quantum affine algebras. J. Geom. Phys. 11(1–4): 445–452 ·Zbl 0784.17022 ·doi:10.1016/0393-0440(93)90070-U
[23]Kulish P. and Reshetikhin N. (1983). Diagonalization of GL(N)-invariant transfer matrices and quantum N-wave system (Lee model). J. Phys. A: Math. Gen. 16: L591–L596 ·Zbl 0545.35082 ·doi:10.1088/0305-4470/16/16/001
[24]Lusztig G. (1993). Introduction to quantum groups. Birkhäuser, Basel ·Zbl 0788.17010
[25]Reshetikhin N. (1985). Integrable models of one-dimensional quantum magnets with the \({\mathfrak{o}}(n)\) and \({\mathfrak{sp}}(2k)\) symmetry. Theor. Math. Phys. 63: 347–366
[26]Reshetikhin N. and Semenov-Tian-Shansky M. (1990). Central extensions of quantum current groups. Lett. Math. Phys. 19(2): 133–142 ·Zbl 0692.22011 ·doi:10.1007/BF01045884
[27]Smirnov, F.: Form factors in completely integrable models of quantum field theory. Adv. Series in Math. Phys., Vol. 14, Singapore: World Scientific, 1992 ·Zbl 0788.46077
[28]Sweedler, M.E.: Hopf Algebras. Reading, Ma: Addison-Wesley, 1969 ·Zbl 0194.32901
[29]Tarasov V.O. (1988). An algebraic Bethe ansatz for the Izergin-Korepin R-matrix. Theor. and Math. Phys. 76(2): 793–804 ·doi:10.1007/BF01028578
[30]Tarasov V. and Varchenko A. (1995). Jackson integrals for the solutions to Knizhnik-Zamolodchikov equation. St. Petersburg Math. J. 6(2): 275–313 ·Zbl 0902.39002
[31]Tarasov V. and Varchenko A. (1997). Geometry of q-hypergeometric functions, quantum affine algebras and elliptic quantum groups. Astérisque 246: 1–135 ·Zbl 0938.17012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp