Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Statistical discrimination analysis using the maximum function.(English)Zbl 1132.62049

Summary: The maximum of \(k\) functions defined on \(\mathbb R^n\), \(n\geq 1,\) by \[f_{\max} (x) = \max\{ f_{1} (x),\dots , f_k (x)\},\;\forall x \in\mathbb R^n,\] can have important roles in statistics, particularly in classification. Through its relation with the Bayes error, which is the reference error in classification, it can serve to compute numerical bounds for errors in other classification schemes. It can also serve to define the joint \(L^1\)-distance between more than two densities, which, in turn, will serve as a useful tool in classification and cluster analyses. It has a vast potential application in digital image processing too. Finally, its versatile role can be seen in several numerical examples, related to the analysis of Fisher’s classical iris data in multidimensional spaces.

MSC:

62H30 Classification and discrimination; cluster analysis (statistical aspects)
62F15 Bayesian inference
68T10 Pattern recognition, speech recognition

Cite

References:

[1]Ben Bassat M., Handbook of Statistics 2 pp 773– (1982) ·Zbl 0506.62044
[2]Devroye L., A Probabilistic Theory of Pattern Recognition (1996)
[3]Fisher R. A., Ann. Eugenic 7 pp 376– (1936)
[4]Fukunaga K., Introduction to Statistical Pattern Recognition., 2. ed. (1990) ·Zbl 0711.62052
[5]DOI: 10.1007/BF02479383 ·Zbl 0341.62047 ·doi:10.1007/BF02479383
[6]DOI: 10.2307/2284709 ·Zbl 0241.62039 ·doi:10.2307/2284709
[7]Gonzalez R. C., Digital Image Processing with Matllab (2004)
[8]DOI: 10.1080/03610928908830127 ·Zbl 0696.62131 ·doi:10.1080/03610928908830127
[9]Johnson R., Applied Multivariate Statistical Analysis., 4. ed. (1998)
[10]Kendall M., The Advanced Theory of Statistics 3, 4. ed. (1983)
[11]Mardia K. V., Multivariate Analysis (1979)
[12]Martinez W. L., Computational Statistics Handbook with Matlab (2002) ·Zbl 0986.62104
[13]DOI: 10.1214/aos/1176348512 ·Zbl 0752.62028 ·doi:10.1214/aos/1176348512
[14]Pham-Gia , T. ( 2007 ). Hammax, a computer software for discrimination and clustering . Université de Moncton , Moncton , NB , Canada .
[15]DOI: 10.1007/s00184-006-0027-1 ·Zbl 1099.62026 ·doi:10.1007/s00184-006-0027-1
[16]DOI: 10.1007/s10260-006-0012-x ·Zbl 1156.62336 ·doi:10.1007/s10260-006-0012-x
[17]DOI: 10.2307/2532099 ·doi:10.2307/2532099
[18]Thabane L., Int. J. Statist. Sci. 3 pp 209– (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp