Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes.(English)Zbl 1130.65113

The authors provide a non-linear finite volume scheme in order to integrate numerically the stationary diffusion equation. Compared with linear schemes, this scheme satisfies the following practical requirements: it is locally conservative, it is monotone, i.e., preserves the positivity of the differential solution, it is reliable on unstructured anisotropic meshes that could be severely distorted, it allows heterogeneous full diffusion tensors, it generates a sparse system with minimal number of non-zero entries, and eventually, it has “higher than the first order of accuracy for smooth solutions”. All these properties are underlined by some numerical experiments.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations

Software:

COUPLEX

Cite

References:

[1]Aavatsmark, I.; Barkve, T.; Boe, O.; Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: derivation of the methods, SIAM J. Sci. Comput., 19, 5, 1700-1716 (1998) ·Zbl 0951.65080
[2]Aavatsmark, I.; Eigestad, G. T.; Nordbotten, J. M., Monotonicity of control volume methods, Numer. Math., APR, 106, 2, 255-288 (2007) ·Zbl 1215.76090
[3]Bernard-Michel, G.; Le Potier, C.; Beccantini, A.; Gounand, S.; Chraibi, M., The Andra Couplex 1 test case: comparisons between finite element, mixed hybrid finite element and finite volume discretizations, Comput. Geosci., 8, 83-98 (2004) ·Zbl 1056.86001
[4]Bourgeat, A.; Kern, M.; Schumacher, S.; Talandier, J., The COUPLEX test cases: nuclear waste disposal simulation, Comput. Geosci., 8, 83-98 (2004) ·Zbl 1060.86002
[5]Brezzi, F.; Lipnikov, K.; Shashkov, M.; Simoncini, V., A new discretization methodology for diffusion problems on generalized polyhedral meshes, Comput. Methods Appl. Mech. Eng., 196, 37-40 SPEC. ISS., 3682-3692 (2007) ·Zbl 1173.76370
[6]Burman, E.; Ern, A., Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes, C. R. Math., 338, 8, 641-646 (2004) ·Zbl 1049.65128
[7]Draganescu, A.; Dupont, T. F.; Scott, L. R., Failure of the discrete maximum principle for an elliptic finite element problem, Math. Comp., 74, 249, 1-23 (2004) ·Zbl 1074.65129
[8]Droniou, J.; Eymard, R., A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. Math., 105, 1, 35-71 (2006) ·Zbl 1109.65099
[9]Hoteit, H.; Mose, R.; Philippe, B.; Ackerer, Ph.; Erhel, J., The maximum principle violations of the mixed-hybrid finite-element method applied to diffusion equations, Numer. Meth. Eng., 55, 12, 1373-1390 (2002) ·Zbl 1062.76524
[10]Kaporin, I., High quality preconditioning of a general symmetric positive definite matrix based on its \(U^T U+U^T\) R+\(R^TU\)-decomposition, Numer. Linear Algebra Appl., 5, 483-509 (1998) ·Zbl 0969.65037
[11]Le Potier, C., Schema volumes finis monotone pour des operateurs de diffusion fortement anisotropes sur des maillages de triangle nonstructures, C. C. Acad. Sci. Paris, Ser. I, 341, 787-792 (2005) ·Zbl 1081.65086
[12]R. Liska, M. Shashkov, Enforcing the discrete maximum prinicple for linear finite element solutions of elliptic problems, Commun. Comput. Phys. 2007, accepted for publication.; R. Liska, M. Shashkov, Enforcing the discrete maximum prinicple for linear finite element solutions of elliptic problems, Commun. Comput. Phys. 2007, accepted for publication. ·Zbl 1199.65381
[13]M. Mlacnik, L. Durlofsky, R. Juanes, H. Tchelepi, Multi-point flux approximations for reservoir simulation, 12th Annual SUPRI-HW Meeting, Stanford University, November 18-19, 2004.; M. Mlacnik, L. Durlofsky, R. Juanes, H. Tchelepi, Multi-point flux approximations for reservoir simulation, 12th Annual SUPRI-HW Meeting, Stanford University, November 18-19, 2004.
[14]Mishev, I. D., Finite volume methods on Voronoi meshes, Numer. Methods Partial Diff. Eq., 12, 2, 193-212 (1998) ·Zbl 0903.65083
[15]Korotov, S.; Krizek, M.; Neittaanmäki, P., Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle, Math. Comp., 70, 107-119 (2000) ·Zbl 1001.65125
[16]Shepard, D., A two-dimensional interpolation function for irregularly spaced data, (Proceedings of the 23d ACM National Conference (1968), ACM: ACM NY), 517-524
[17]Stoyan, G., On maximum principles for monotone matrices, Linear Algebra Appl., 78, 147-161 (1986) ·Zbl 0587.15014
[18]Van der Vorst, H., Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems, SIAM J. Sci. Statist. Comput., 13, 631-644 (1992) ·Zbl 0761.65023
[19]Varga, R., Matrix Iterative Analysis (1962), Prentice-Hall, Inc.: Prentice-Hall, Inc. Englewood Cliffs, NJ ·Zbl 0133.08602
[20]Varga, R., On a discrete maximum principle, J. SIAM Numer. Anal., 3, 355-359 (1966) ·Zbl 0143.17603
[21]Yu. Vassilevski, I. Kapyrin, A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes, Dokl. Math. 2007, accepted for publication.; Yu. Vassilevski, I. Kapyrin, A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes, Dokl. Math. 2007, accepted for publication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp