[1] | Assem, Ibrahim; Brüstle, Thomas; Schiffler, Ralf; Todorov, Gordana, Cluster categories and duplicated algebras, arXiv: ·Zbl 1114.16010 |
[2] | Assem, Ibrahim; Brüstle, Thomas; Schiffler, Ralf, Cluster-tilted algebras as trivial extensions, arXiv: ·Zbl 1159.16011 |
[3] | Auslander, Maurice, Coherent functors, (Proc. Conf. Categorical Algebra. Proc. Conf. Categorical Algebra, La Jolla, CA, 1965 (1966), Springer: Springer New York), 189-231 ·Zbl 0192.10902 |
[4] | Auslander, Maurice, Functors and morphisms determined by objects, (Representation Theory of Algebras, Proc. Conf.. Representation Theory of Algebras, Proc. Conf., Temple Univ., Philadelphia, PA, 1976. Representation Theory of Algebras, Proc. Conf.. Representation Theory of Algebras, Proc. Conf., Temple Univ., Philadelphia, PA, 1976, Lecture Notes in Pure and Appl. Math., vol. 37 (1978), Dekker: Dekker New York), 1-244 ·Zbl 0383.16015 |
[5] | Auslander, Maurice; Reiten, Idun, Applications of contravariantly finite subcategories, Adv. Math., 86, 1, 111-152 (1991) ·Zbl 0774.16006 |
[6] | Auslander, Maurice; Reiten, Idun, Cohen-Macaulay and Gorenstein Artin algebras, (Representation Theory of Finite Groups and Finite-Dimensional Algebras. Representation Theory of Finite Groups and Finite-Dimensional Algebras, Bielefeld, 1991. Representation Theory of Finite Groups and Finite-Dimensional Algebras. Representation Theory of Finite Groups and Finite-Dimensional Algebras, Bielefeld, 1991, Progr. Math., vol. 95 (1991), Birkhäuser: Birkhäuser Basel), 221-245 ·Zbl 0776.16003 |
[7] | Auslander, Maurice; Reiten, Idun,DTr-periodic modules and functors, (Representation Theory of Algebras. Representation Theory of Algebras, Cocoyoc, 1994. Representation Theory of Algebras. Representation Theory of Algebras, Cocoyoc, 1994, CMS Conf. Proc., vol. 18 (1996), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 39-50 ·Zbl 0859.16008 |
[8] | Berenstein, Arkady; Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., 126, 1, 1-52 (2005) ·Zbl 1135.16013 |
[9] | Bongartz, Klaus, Algebras and quadratic forms, J. London Math. Soc. (2), 28, 3, 461-469 (1983) ·Zbl 0532.16020 |
[10] | Buan, Aslak Bakke; Reiten, Idun, Cluster algebras associated with extended Dynkin quivers, Int. Math. Res. Not., 12804, 1-10 (2006) ·Zbl 1116.16013 |
[11] | Buan, Aslak Bakke; Reiten, Idun, From tilted to cluster-tilted algebras of Dynkin type, arXiv: ·Zbl 1116.16013 |
[12] | Buan, Aslak Bakke; Marsh, Robert J.; Reineke, Markus; Reiten, Idun; Todorov, Gordana, Tilting theory and cluster combinatorics, Adv. Math., 204, 2, 572-618 (2006) ·Zbl 1127.16011 |
[13] | Aslak Bakke Buan, Robert J. Marsh, Idun Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc., in press; Aslak Bakke Buan, Robert J. Marsh, Idun Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc., in press ·Zbl 1111.16014 |
[14] | Buan, Aslak Bakke; Marsh, Robert J.; Reiten, Idun, Cluster-tilted algebras of finite representation type, J. Algebra, in press ·Zbl 1116.16012 |
[15] | Buan, Aslak Bakke; Marsh, Robert J.; Reiten, Idun; Todorov, Gordana, Clusters and seeds in acyclic cluster algebras, Proc. Amer. Math. Soc., in press ·Zbl 1190.16022 |
[16] | Buan, Aslak Bakke; Reiten, Idun; Seven, Ahmet, Tame concealed algebras and cluster quivers of minimal infinite type, arXiv: ·Zbl 1127.16012 |
[17] | Caldero, Philippe; Keller, Bernhard, From triangulated categories to cluster algebras, arXiv: ·Zbl 1115.18301 |
[18] | Caldero, Philippe; Keller, Bernhard, From triangulated categories to cluster algebras II, arXiv: ·Zbl 1115.18301 |
[19] | Caldero, Philippe; Chapoton, Frédéric; Schiffler, Ralf, Quivers with relations arising from clusters \((A_n\) case), arXiv: ·Zbl 1127.16013 |
[20] | Fomin, Sergey; Reading, Nathan, Generalized cluster complexes and Coxeter combinatorics, arXiv: ·Zbl 1117.52017 |
[21] | Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. I. Foundations, J. Amer. Math. Soc., 15, 2, 497-529 (2002), (electronic) ·Zbl 1021.16017 |
[22] | Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. II. Finite type classification, Invent. Math., 154, 1, 63-121 (2003) ·Zbl 1054.17024 |
[23] | Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras: Notes for the CDM-03 conference, (Current Developments in Mathematics. Current Developments in Mathematics, 2003 (2003), Int. Press: Int. Press Somerville, MA), 1-34 ·Zbl 1119.05108 |
[24] | Gabriel, P.; Roiter, A. V., Representations of Finite-Dimensional Algebras, Encyclopaedia Math. Sci., vol. 73 (1992), Springer ·Zbl 0839.16001 |
[25] | Christof Geiß, Bernhard Keller, Quadrangulated categories, Oberwolfach talk, February 2005; Christof Geiß, Bernhard Keller, Quadrangulated categories, Oberwolfach talk, February 2005 |
[26] | Geiß, Christof; Leclerc, Bernard; Schröer, Jan, Auslander algebras and initial seeds for cluster algebras, arXiv: ·Zbl 1135.17007 |
[27] | Geiß, Christof; Leclerc, Bernard; Schröer, Jan, Rigid modules over preprojective algebras, Invent. Math., in press ·Zbl 1167.16009 |
[28] | Geiß, Christof; Leclerc, Bernard; Schröer, Jan, Semicanonical bases and preprojective algebras II: A multiplication formula, arXiv: ·Zbl 1132.17004 |
[29] | Happel, Dieter, On the derived category of a finite-dimensional algebra, Comment. Math. Helv., 62, 3, 339-389 (1987) ·Zbl 0626.16008 |
[30] | Happel, Dieter, On Gorenstein algebras, (Representation Theory of Finite Groups and Finite-Dimensional Algebras. Representation Theory of Finite Groups and Finite-Dimensional Algebras, Bielefeld, 1991. Representation Theory of Finite Groups and Finite-Dimensional Algebras. Representation Theory of Finite Groups and Finite-Dimensional Algebras, Bielefeld, 1991, Progr. Math., vol. 95 (1991), Birkhäuser: Birkhäuser Basel), 389-404 ·Zbl 0759.16007 |
[31] | Heller, Alex, Stable homotopy categories, Bull. Amer. Math. Soc., 74, 28-63 (1968) ·Zbl 0177.25605 |
[32] | Iyama, Osamu, Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math., in press ·Zbl 1115.16005 |
[33] | Osamu Iyama, Maximal orthogonal subcategories of triangulated categories satisfying Serre duality, Oberwolfach Report 6, 2005; Osamu Iyama, Maximal orthogonal subcategories of triangulated categories satisfying Serre duality, Oberwolfach Report 6, 2005 |
[34] | Iyama, Osamu; Reiten, Idun, Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras, arXiv: ·Zbl 1162.16007 |
[35] | Keller, Bernhard, Chain complexes and stable categories, Manuscripta Math., 67, 4, 379-417 (1990) ·Zbl 0753.18005 |
[36] | Keller, Bernhard, Derived categories and universal problems, Comm. Algebra, 19, 699-747 (1991) ·Zbl 0722.18002 |
[37] | Keller, Bernhard, Derived categories and their uses, (Handbook of Algebra, vol. 1 (1996), North-Holland: North-Holland Amsterdam), 671-701 ·Zbl 0862.18001 |
[38] | Keller, Bernhard, On triangulated orbit categories, Doc. Math., 10, 551-581 (2005) ·Zbl 1086.18006 |
[39] | Keller, Bernhard; Vossieck, Dieter, Sous les catégories dérivées, C. R. Acad. Sci. Paris Sér. I Math., 305, 6, 225-228 (1987) ·Zbl 0628.18003 |
[40] | Krause, Henning, The stable derived category of a Noetherian scheme, Compos. Math., 141, 5, 1128-1162 (2005) ·Zbl 1090.18006 |
[41] | Neeman, Amnon, The derived category of an exact category, J. Algebra, 135, 388-394 (1990) ·Zbl 0753.18004 |
[42] | Quillen, Daniel, Higher algebraic \(K\)-theory. I, (Algebraic \(K\)-Theory, I: Higher \(K\)-Theories, Proc. Conf.. Algebraic \(K\)-Theory, I: Higher \(K\)-Theories, Proc. Conf., Battelle Memorial Inst., Seattle, WA, 1972. Algebraic \(K\)-Theory, I: Higher \(K\)-Theories, Proc. Conf.. Algebraic \(K\)-Theory, I: Higher \(K\)-Theories, Proc. Conf., Battelle Memorial Inst., Seattle, WA, 1972, Lecture Notes in Math., vol. 341 (1973), Springer), 85-147 ·Zbl 0292.18004 |
[43] | Idun Reiten, Helmut Lenzing, Hereditary noetherian categories of positive Euler characteristic, Math. Z., in press; Idun Reiten, Helmut Lenzing, Hereditary noetherian categories of positive Euler characteristic, Math. Z., in press ·Zbl 1105.18010 |
[44] | Reiten, Idun; Bergh, Michel Van den, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc., 15, 2, 295-366 (2002), (electronic) ·Zbl 0991.18009 |
[45] | Rickard, Jeremy, Derived categories and stable equivalence, J. Pure Appl. Algebra, 61, 303-317 (1989) ·Zbl 0685.16016 |
[46] | Claus Michael Ringel, Some remarks concerning tilting modules and tilted algebras. Origin. Relevance. Future, in: Lidia Angeleri-Hügel, Dieter Happel, Henning Krause (Eds.), Handbook of Tilting Theory; Claus Michael Ringel, Some remarks concerning tilting modules and tilted algebras. Origin. Relevance. Future, in: Lidia Angeleri-Hügel, Dieter Happel, Henning Krause (Eds.), Handbook of Tilting Theory ·Zbl 1208.16015 |
[47] | Thomas, Hugh, Defining an \(m\)-cluster category, arXiv: ·Zbl 1155.16016 |
[48] | Anette Wraalsen, Ph.D. Thesis, in preparation; Anette Wraalsen, Ph.D. Thesis, in preparation |
[49] | Bin Zhu, Tilting theory in cluster categories of hereditary abelian categories, preprint, 2005; Bin Zhu, Tilting theory in cluster categories of hereditary abelian categories, preprint, 2005 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.