35Q40 | PDEs in connection with quantum mechanics |
81Q10 | Selfadjoint operator theory in quantum theory, including spectral analysis |
47A40 | Scattering theory of linear operators |
47A50 | Equations and inequalities involving linear operators, with vector unknowns |
35B45 | A priori estimates in context of PDEs |
[1] | Agranovich Z.S., Marchenko V.A. (1963) The inverse scattering theory. New York, Gordon and Breach ·Zbl 0117.06003 |
[2] | Agmon S. (1975) Spectral properties of Schrödinger operators and Scattering Theory. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 2(2):151–218 ·Zbl 0315.47007 |
[3] | Artbazar G., Yajima K. (2000) The L p -continuity of wave operators for one dimensional Schrödinger operators. J. Math. Sci. Univ. Tokyo 7, 221–240 ·Zbl 0976.34071 |
[4] | Barcelo J.A., Ruiz A., Vega L. (1997) Weighted Estimates for the Helmholtz Equation and Some Applications. J. Funct. Anal. 150(2): 356–382 ·Zbl 0890.35028 ·doi:10.1006/jfan.1997.3131 |
[5] | Burq N., Planchon F. (2006) Smoothing and dispersive estimates for 1d Schrödinger equations with BV coefficients and applications. J. Funct. Anal. 236: 265–298 ·Zbl 1293.35264 ·doi:10.1016/j.jfa.2006.02.019 |
[6] | Christ M., Kiselev A. (2002) Scattering and wave operators for one-dimensional Schrödinger operators with slowly decayng nonsmooth potentials. GAFA 12, 1174–1234 ·Zbl 1039.34076 ·doi:10.1007/s00039-002-1174-9 |
[7] | D’Ancona, P., Fanelli L.: Decay estimates for the wave and Dirac equations with a magnetic potential. To appear on Comm. Pure Appl. Math. |
[8] | D’Ancona, P., Pierfelice, V.: On the wave equation with a large rough potential. To appear on J. Funct. Anal. |
[9] | Deift P., Trubowitz E. (1979) Inverse scattering on the line. Comm. Pure and Appl. Math. 33, 121–251 ·doi:10.1002/cpa.3160320202 |
[10] | Goldberg M., Schlag W. (2004) Dispersive estimates for Schrödinger operators in dimensions one and three. Commun. Math. Phys. 251(1): 157–178 ·Zbl 1086.81077 ·doi:10.1007/s00220-004-1140-5 |
[11] | Goldberg M. (2006) Dispersive estimates for the three-dimensional Schrödinger equation with rough potentials. Amer. J. Math. 128, 731–750 ·Zbl 1096.35027 ·doi:10.1353/ajm.2006.0025 |
[12] | Goldberg M., Visan M. (2006) A counterexample to dispersive estimates for Schrödinger operators in higher dimensions. Commun. Math. Phys. 266, 211–238 ·Zbl 1110.35073 ·doi:10.1007/s00220-006-0013-5 |
[13] | Jensen A., Nakamura S. (1994) Mapping properties of functions of Schrödinger operators between L p -spaces and Besov spaces. Adv. Stud. in Pure Math. 23, 187–209 ·Zbl 0815.47012 |
[14] | Keel M., Tao T. (1998) Endpoint Strichartz estimates. Amer. J. Math. 120(5): 955–980 ·Zbl 0922.35028 ·doi:10.1353/ajm.1998.0039 |
[15] | Rodnianski I., Schlag W. (2004) Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3): 451–513 ·Zbl 1063.35035 ·doi:10.1007/s00222-003-0325-4 |
[16] | Schlag, W.: Dispersive estimates for Schrödinger operators: A survey. To appear in Conference Proceedings ”workshop on Aspects of Non-Linear PDE” IAS Princeton, 2004 ·Zbl 1086.81077 |
[17] | Weder R. (1999) The W k,p -continuity of the Schrödinger Wave Operators on the line. Commun. Math. Phys. 208, 507–520 ·Zbl 0945.34070 ·doi:10.1007/s002200050767 |
[18] | Weder R. (2000) L p L p’ estimates for the Schrödinger equations on the line and inverse scattering for the nonlinear Schrödinger equation wivth a potential. J. Funct. Anal. 170, 37–68 ·Zbl 0943.34070 ·doi:10.1006/jfan.1999.3507 |
[19] | Weder R. (2003) The L p L ṕ Estimate for the Schrödinger Equation on the Half-Line. J. Math. Anal. Appl. 281, 233–243 ·Zbl 1032.34081 |
[20] | Yajima K. (1995) The W k,p -continuity of wave operators for Schrödinger operators. J. Math. Soc. Japan 47, 551–581 ·Zbl 0837.35039 ·doi:10.2969/jmsj/04730551 |
[21] | Yajima K. (1995) The W k,p -continuity of wave operators for Schrödinger operators III, even dimensional cases m 4. J. Math. Sci. Univ. Tokyo 2, 311–346 ·Zbl 0841.47009 |
[22] | Yajima K. (1999) L p -boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 208, 125–152 ·Zbl 0961.47004 ·doi:10.1007/s002200050751 |
[23] | Yajima K. (2005) Dispersive estimate for Schrödinger equations with threshold resonance and eigenvalue. Commun. Math. Phys. 259, 475–509 ·Zbl 1079.81021 ·doi:10.1007/s00220-005-1375-9 |