Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

\(L^p\)-boundedness of the wave operator for the one dimensional Schrödinger operator.(English)Zbl 1127.35053

Summary: Given a one-dimensional perturbed Schrödinger operator \(H = - d^{2}/ dx ^{2} + V (x)\), we consider the associated wave operators \(W_{\pm}\), defined as the strong \(L^{2}\) limits \(\lim_{s\to\pm\infty}e^{isH}e^{-isH_{0}}\). We prove that \(W_{\pm}\) are bounded operators on \(L^{p}\) for all \(1 < p < \infty\), provided \((1+|x|)^{2}V(x)\in L^{1}\), or else \((1+|x|)V(x)\in L^{1}\) and 0 is not a resonance. For \(p = \infty\) we obtain an estimate in terms of the Hilbert transform. Some applications to dispersive estimates for equations with variable rough coefficients are given.

MSC:

35Q40 PDEs in connection with quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
47A40 Scattering theory of linear operators
47A50 Equations and inequalities involving linear operators, with vector unknowns
35B45 A priori estimates in context of PDEs

Cite

References:

[1]Agranovich Z.S., Marchenko V.A. (1963) The inverse scattering theory. New York, Gordon and Breach ·Zbl 0117.06003
[2]Agmon S. (1975) Spectral properties of Schrödinger operators and Scattering Theory. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 2(2):151–218 ·Zbl 0315.47007
[3]Artbazar G., Yajima K. (2000) The L p -continuity of wave operators for one dimensional Schrödinger operators. J. Math. Sci. Univ. Tokyo 7, 221–240 ·Zbl 0976.34071
[4]Barcelo J.A., Ruiz A., Vega L. (1997) Weighted Estimates for the Helmholtz Equation and Some Applications. J. Funct. Anal. 150(2): 356–382 ·Zbl 0890.35028 ·doi:10.1006/jfan.1997.3131
[5]Burq N., Planchon F. (2006) Smoothing and dispersive estimates for 1d Schrödinger equations with BV coefficients and applications. J. Funct. Anal. 236: 265–298 ·Zbl 1293.35264 ·doi:10.1016/j.jfa.2006.02.019
[6]Christ M., Kiselev A. (2002) Scattering and wave operators for one-dimensional Schrödinger operators with slowly decayng nonsmooth potentials. GAFA 12, 1174–1234 ·Zbl 1039.34076 ·doi:10.1007/s00039-002-1174-9
[7]D’Ancona, P., Fanelli L.: Decay estimates for the wave and Dirac equations with a magnetic potential. To appear on Comm. Pure Appl. Math.
[8]D’Ancona, P., Pierfelice, V.: On the wave equation with a large rough potential. To appear on J. Funct. Anal.
[9]Deift P., Trubowitz E. (1979) Inverse scattering on the line. Comm. Pure and Appl. Math. 33, 121–251 ·doi:10.1002/cpa.3160320202
[10]Goldberg M., Schlag W. (2004) Dispersive estimates for Schrödinger operators in dimensions one and three. Commun. Math. Phys. 251(1): 157–178 ·Zbl 1086.81077 ·doi:10.1007/s00220-004-1140-5
[11]Goldberg M. (2006) Dispersive estimates for the three-dimensional Schrödinger equation with rough potentials. Amer. J. Math. 128, 731–750 ·Zbl 1096.35027 ·doi:10.1353/ajm.2006.0025
[12]Goldberg M., Visan M. (2006) A counterexample to dispersive estimates for Schrödinger operators in higher dimensions. Commun. Math. Phys. 266, 211–238 ·Zbl 1110.35073 ·doi:10.1007/s00220-006-0013-5
[13]Jensen A., Nakamura S. (1994) Mapping properties of functions of Schrödinger operators between L p -spaces and Besov spaces. Adv. Stud. in Pure Math. 23, 187–209 ·Zbl 0815.47012
[14]Keel M., Tao T. (1998) Endpoint Strichartz estimates. Amer. J. Math. 120(5): 955–980 ·Zbl 0922.35028 ·doi:10.1353/ajm.1998.0039
[15]Rodnianski I., Schlag W. (2004) Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3): 451–513 ·Zbl 1063.35035 ·doi:10.1007/s00222-003-0325-4
[16]Schlag, W.: Dispersive estimates for Schrödinger operators: A survey. To appear in Conference Proceedings ”workshop on Aspects of Non-Linear PDE” IAS Princeton, 2004 ·Zbl 1086.81077
[17]Weder R. (1999) The W k,p -continuity of the Schrödinger Wave Operators on the line. Commun. Math. Phys. 208, 507–520 ·Zbl 0945.34070 ·doi:10.1007/s002200050767
[18]Weder R. (2000) L p L p’ estimates for the Schrödinger equations on the line and inverse scattering for the nonlinear Schrödinger equation wivth a potential. J. Funct. Anal. 170, 37–68 ·Zbl 0943.34070 ·doi:10.1006/jfan.1999.3507
[19]Weder R. (2003) The L p L ṕ Estimate for the Schrödinger Equation on the Half-Line. J. Math. Anal. Appl. 281, 233–243 ·Zbl 1032.34081
[20]Yajima K. (1995) The W k,p -continuity of wave operators for Schrödinger operators. J. Math. Soc. Japan 47, 551–581 ·Zbl 0837.35039 ·doi:10.2969/jmsj/04730551
[21]Yajima K. (1995) The W k,p -continuity of wave operators for Schrödinger operators III, even dimensional cases m 4. J. Math. Sci. Univ. Tokyo 2, 311–346 ·Zbl 0841.47009
[22]Yajima K. (1999) L p -boundedness of wave operators for two-dimensional Schrödinger operators. Commun. Math. Phys. 208, 125–152 ·Zbl 0961.47004 ·doi:10.1007/s002200050751
[23]Yajima K. (2005) Dispersive estimate for Schrödinger equations with threshold resonance and eigenvalue. Commun. Math. Phys. 259, 475–509 ·Zbl 1079.81021 ·doi:10.1007/s00220-005-1375-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp