Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Tilting theory and cluster combinatorics.(English)Zbl 1127.16011

From the authors’ summary: We introduce a new category \(\mathcal C\), which we call the cluster category, obtained as a quotient of the bounded derived category \(\mathcal D\) of the module category of a finite-dimensional hereditary algebra \(H\) over a field. We show that, in the simply laced Dynkin case, \(\mathcal C\) can be regarded as a natural model for the combinatorics of the corresponding Fomin-Zelevinsky cluster algebra. Using approximation theory, we investigate the tilting theory of \(\mathcal C\), showing that it is more regular than that of the module category itself, and demonstrating an interesting link with the classification of self-injective algebras of finite representation type. This investigation also enables us to conjecture a generalisation of APR-tilting.

MSC:

16G20 Representations of quivers and partially ordered sets
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
18E30 Derived categories, triangulated categories (MSC2010)
16D90 Module categories in associative algebras

Cite

References:

[1]Auslander, M.; Platzeck, M. I.; Reiten, I., Coxeter functors without diagrams, Trans. Amer. Math. Soc., 250, 1-46 (1979) ·Zbl 0421.16016
[2]Auslander, M.; Smalø, S. O., Preprojective modules over Artin algebras, J. Algebra, 66, 61-122 (1980) ·Zbl 0477.16013
[3]Berenstein, A.; Fomin, S.; Zelevinsky, A., Cluster algebras III: upper bounds and double Bruhat cells, Duke Math. J., 126, 1, 1-52 (2005) ·Zbl 1135.16013
[4]K. Bongartz, Tilted algebras, in: M. Auslander, E. Lluis (Eds.), Representations of algebras (Puebla, 1980), Lecture Notes in Mathematics, vol. 903, Springer, Berlin, New York, 1981, pp. 26-38.; K. Bongartz, Tilted algebras, in: M. Auslander, E. Lluis (Eds.), Representations of algebras (Puebla, 1980), Lecture Notes in Mathematics, vol. 903, Springer, Berlin, New York, 1981, pp. 26-38. ·Zbl 0465.00011
[5]Bongartz, K., Critical simply connected algebras, Manuscripta Math., 46, 1-3, 117-136 (1984) ·Zbl 0537.16024
[6]Bongartz, K.; Gabriel, P., Covering spaces in representation-theory, Invent. Math., 65, 3, 331-378 (1981/2) ·Zbl 0482.16026
[7]Bretscher, O.; Läser, C.; Riedtmann, C., Selfinjective and simply connected algebras, Manuscipta Math., 36, 253-307 (1981) ·Zbl 0478.16024
[8]Buan, A. B.; Krause, H., Tilting and cotilting for quivers of type \(\widetilde{A}_n\), J. Pure Appl. Algebra, 190, 1-3, 1-21 (2004) ·Zbl 1085.16010
[9]A.B. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras, Preprint, February 2004, Trans. Amer. Math. Soc., to appear.; A.B. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras, Preprint, February 2004, Trans. Amer. Math. Soc., to appear. ·Zbl 1123.16009
[10]A.B. Buan, R. Marsh, I. Reiten, Cluster mutation via quiver representations, Preprint arXiv:math.RT/0412077, 2004.; A.B. Buan, R. Marsh, I. Reiten, Cluster mutation via quiver representations, Preprint arXiv:math.RT/0412077, 2004. ·Zbl 1193.16016
[11]A.B. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras of finite representation type, Preprint, 2005.; A.B. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras of finite representation type, Preprint, 2005. ·Zbl 1116.16012
[12]P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Preprint arXiv:math.RT/0410187, 2004.; P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Preprint arXiv:math.RT/0410187, 2004. ·Zbl 1119.16013
[13]P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations arising from clusters \(( A_n\); P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations arising from clusters \(( A_n\) ·Zbl 1137.16020
[14]P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations and cluster tilted algebras, Preprint arXiv:math.RT/0411238, 2004.; P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations and cluster tilted algebras, Preprint arXiv:math.RT/0411238, 2004. ·Zbl 1127.16013
[15]Chapoton, F.; Fomin, S.; Zelevinsky, A., Polytopal realizations of generalized associahedra, Canad. Math. Bull., 45, 4, 537-566 (2002) ·Zbl 1018.52007
[16]Coelho, F.; Happel, D.; Unger, L., Complements to partial tilting modules, J. Algebra, 170, 1, 184-205 (1994) ·Zbl 0834.16012
[17]V. Dlab, C.M. Ringel, The module theoretical approach to quasi-hereditary algebras, in: H. Tachikawa, S. Brenner (Eds.), Representations of algebras and related topics (Kyoto, 1990), London Mathematical Society, Lecture Note Series, vol. 168, Cambridge University Press, Cambridge, 1992, pp. 200-224.; V. Dlab, C.M. Ringel, The module theoretical approach to quasi-hereditary algebras, in: H. Tachikawa, S. Brenner (Eds.), Representations of algebras and related topics (Kyoto, 1990), London Mathematical Society, Lecture Note Series, vol. 168, Cambridge University Press, Cambridge, 1992, pp. 200-224. ·Zbl 0793.16006
[18]Fomin, S.; Zelevinsky, A., Cluster algebras I: foundations, J. Amer. Math. Soc., 15, 2, 497-529 (2002) ·Zbl 1021.16017
[19]Fomin, S.; Zelevinsky, A., Cluster algebras II: finite type classification, Invent. Math., 154, 1, 63-121 (2003) ·Zbl 1054.17024
[20]Fomin, S.; Zelevinsky, A., The Laurent phenomenon, Adv. Appl. Math., 28, 2, 119-144 (2002) ·Zbl 1012.05012
[21]Fomin, S.; Zelevinsky, A., Y-systems and generalized associahedra, Ann. Math., 158, 3 (2003) ·Zbl 1057.52003
[22]Gekhtman, M.; Shapiro, M.; Vainshtein, A., Cluster algebras and Poisson geometry, Moscow Math. J., 3, 899-934 (2003) ·Zbl 1057.53064
[23]Happel, D., Tilting sets on cylinders, Proc. London Math. Soc., 51, 3, 21-55 (1985) ·Zbl 0583.16020
[24]D. Happel, Triangulated categories in the representation theory of quivers, LMS Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988.; D. Happel, Triangulated categories in the representation theory of quivers, LMS Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. ·Zbl 0635.16017
[25]Happel, D.; Reiten, I.; Smalø, S., Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., 120, 575 (1996) ·Zbl 0849.16011
[26]Happel, D.; Ringel, C., Tilted algebras, Trans. Amer. Math. Soc., 274, 2, 399-443 (1982) ·Zbl 0503.16024
[27]Happel, D.; Unger, L., Almost complete tilting modules, Proc. Amer. Math. Soc., 107, 3, 603-610 (1989) ·Zbl 0675.16012
[28]D. Happel, L. Unger, On the set of tilting objects in hereditary categories, Preprint, 2003.; D. Happel, L. Unger, On the set of tilting objects in hereditary categories, Preprint, 2003. ·Zbl 1082.16019
[29]B. Keller, On Triangulated orbit categories, Preprint arXiv:math.RT /0503240, 2005.; B. Keller, On Triangulated orbit categories, Preprint arXiv:math.RT /0503240, 2005. ·Zbl 1086.18006
[30]Marsh, R.; Reineke, M.; Zelevinsky, A., Generalized associahedra via quiver representations, Trans. Amer. Math. Soc., 355, 10, 4171-4186 (2003) ·Zbl 1042.52007
[31]Panyushev, D. I.,AD-nilpotent ideals of a Borel subalgebra: generators and duality, J. Algebra, 274, 2, 822-846 (2004) ·Zbl 1067.17005
[32]Reiten, I.; Van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc., 15, 2, 295-366 (2002) ·Zbl 0991.18009
[33]C. Riedtmann, Representation-finite self-injective algebras of class \(A_n\); C. Riedtmann, Representation-finite self-injective algebras of class \(A_n\)
[34]Riedtmann, C., Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv., 55, 2, 199-224 (1980) ·Zbl 0444.16018
[35]Riedtmann, C.; Schofield, A., On open orbits and their complements, J. Algebra, 130, 2, 388-411 (1990) ·Zbl 0696.16025
[36]Riedtmann, C.; Schofield, A., On a simplicial complex associated with tilting modules, Comment. Math. Helv., 66, 1, 70-78 (1991) ·Zbl 0790.16013
[37]C.M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer, Berlin, 1984.; C.M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer, Berlin, 1984. ·Zbl 0546.16013
[38]J. Scott, Grassmannians and cluster algebras, Preprint arXiv:math.CO/ 0311148, 2003, Proc. London. Math. Soc., 2003, to appear.; J. Scott, Grassmannians and cluster algebras, Preprint arXiv:math.CO/ 0311148, 2003, Proc. London. Math. Soc., 2003, to appear.
[39]Unger, L., Schur modules over wild, finite-dimensional path algebras with three simple modules, J. Pure Appl. Algebra, 64, 2, 205-222 (1990) ·Zbl 0701.16012
[40]Unger, L., The simplical complex of tilting modules over quiver algebras, Proc. London Math. Soc., 73, 3, 27-46 (1996) ·Zbl 0861.16008
[41]von Höhne, H., On the dimension vectors in preprojective components, Bull. London Math. Soc., 26, 2, 147-152 (1994) ·Zbl 0813.16008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp