[1] | Auslander, M.; Platzeck, M. I.; Reiten, I., Coxeter functors without diagrams, Trans. Amer. Math. Soc., 250, 1-46 (1979) ·Zbl 0421.16016 |
[2] | Auslander, M.; Smalø, S. O., Preprojective modules over Artin algebras, J. Algebra, 66, 61-122 (1980) ·Zbl 0477.16013 |
[3] | Berenstein, A.; Fomin, S.; Zelevinsky, A., Cluster algebras III: upper bounds and double Bruhat cells, Duke Math. J., 126, 1, 1-52 (2005) ·Zbl 1135.16013 |
[4] | K. Bongartz, Tilted algebras, in: M. Auslander, E. Lluis (Eds.), Representations of algebras (Puebla, 1980), Lecture Notes in Mathematics, vol. 903, Springer, Berlin, New York, 1981, pp. 26-38.; K. Bongartz, Tilted algebras, in: M. Auslander, E. Lluis (Eds.), Representations of algebras (Puebla, 1980), Lecture Notes in Mathematics, vol. 903, Springer, Berlin, New York, 1981, pp. 26-38. ·Zbl 0465.00011 |
[5] | Bongartz, K., Critical simply connected algebras, Manuscripta Math., 46, 1-3, 117-136 (1984) ·Zbl 0537.16024 |
[6] | Bongartz, K.; Gabriel, P., Covering spaces in representation-theory, Invent. Math., 65, 3, 331-378 (1981/2) ·Zbl 0482.16026 |
[7] | Bretscher, O.; Läser, C.; Riedtmann, C., Selfinjective and simply connected algebras, Manuscipta Math., 36, 253-307 (1981) ·Zbl 0478.16024 |
[8] | Buan, A. B.; Krause, H., Tilting and cotilting for quivers of type \(\widetilde{A}_n\), J. Pure Appl. Algebra, 190, 1-3, 1-21 (2004) ·Zbl 1085.16010 |
[9] | A.B. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras, Preprint, February 2004, Trans. Amer. Math. Soc., to appear.; A.B. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras, Preprint, February 2004, Trans. Amer. Math. Soc., to appear. ·Zbl 1123.16009 |
[10] | A.B. Buan, R. Marsh, I. Reiten, Cluster mutation via quiver representations, Preprint arXiv:math.RT/0412077, 2004.; A.B. Buan, R. Marsh, I. Reiten, Cluster mutation via quiver representations, Preprint arXiv:math.RT/0412077, 2004. ·Zbl 1193.16016 |
[11] | A.B. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras of finite representation type, Preprint, 2005.; A.B. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras of finite representation type, Preprint, 2005. ·Zbl 1116.16012 |
[12] | P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Preprint arXiv:math.RT/0410187, 2004.; P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Preprint arXiv:math.RT/0410187, 2004. ·Zbl 1119.16013 |
[13] | P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations arising from clusters \(( A_n\); P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations arising from clusters \(( A_n\) ·Zbl 1137.16020 |
[14] | P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations and cluster tilted algebras, Preprint arXiv:math.RT/0411238, 2004.; P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations and cluster tilted algebras, Preprint arXiv:math.RT/0411238, 2004. ·Zbl 1127.16013 |
[15] | Chapoton, F.; Fomin, S.; Zelevinsky, A., Polytopal realizations of generalized associahedra, Canad. Math. Bull., 45, 4, 537-566 (2002) ·Zbl 1018.52007 |
[16] | Coelho, F.; Happel, D.; Unger, L., Complements to partial tilting modules, J. Algebra, 170, 1, 184-205 (1994) ·Zbl 0834.16012 |
[17] | V. Dlab, C.M. Ringel, The module theoretical approach to quasi-hereditary algebras, in: H. Tachikawa, S. Brenner (Eds.), Representations of algebras and related topics (Kyoto, 1990), London Mathematical Society, Lecture Note Series, vol. 168, Cambridge University Press, Cambridge, 1992, pp. 200-224.; V. Dlab, C.M. Ringel, The module theoretical approach to quasi-hereditary algebras, in: H. Tachikawa, S. Brenner (Eds.), Representations of algebras and related topics (Kyoto, 1990), London Mathematical Society, Lecture Note Series, vol. 168, Cambridge University Press, Cambridge, 1992, pp. 200-224. ·Zbl 0793.16006 |
[18] | Fomin, S.; Zelevinsky, A., Cluster algebras I: foundations, J. Amer. Math. Soc., 15, 2, 497-529 (2002) ·Zbl 1021.16017 |
[19] | Fomin, S.; Zelevinsky, A., Cluster algebras II: finite type classification, Invent. Math., 154, 1, 63-121 (2003) ·Zbl 1054.17024 |
[20] | Fomin, S.; Zelevinsky, A., The Laurent phenomenon, Adv. Appl. Math., 28, 2, 119-144 (2002) ·Zbl 1012.05012 |
[21] | Fomin, S.; Zelevinsky, A., Y-systems and generalized associahedra, Ann. Math., 158, 3 (2003) ·Zbl 1057.52003 |
[22] | Gekhtman, M.; Shapiro, M.; Vainshtein, A., Cluster algebras and Poisson geometry, Moscow Math. J., 3, 899-934 (2003) ·Zbl 1057.53064 |
[23] | Happel, D., Tilting sets on cylinders, Proc. London Math. Soc., 51, 3, 21-55 (1985) ·Zbl 0583.16020 |
[24] | D. Happel, Triangulated categories in the representation theory of quivers, LMS Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988.; D. Happel, Triangulated categories in the representation theory of quivers, LMS Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. ·Zbl 0635.16017 |
[25] | Happel, D.; Reiten, I.; Smalø, S., Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., 120, 575 (1996) ·Zbl 0849.16011 |
[26] | Happel, D.; Ringel, C., Tilted algebras, Trans. Amer. Math. Soc., 274, 2, 399-443 (1982) ·Zbl 0503.16024 |
[27] | Happel, D.; Unger, L., Almost complete tilting modules, Proc. Amer. Math. Soc., 107, 3, 603-610 (1989) ·Zbl 0675.16012 |
[28] | D. Happel, L. Unger, On the set of tilting objects in hereditary categories, Preprint, 2003.; D. Happel, L. Unger, On the set of tilting objects in hereditary categories, Preprint, 2003. ·Zbl 1082.16019 |
[29] | B. Keller, On Triangulated orbit categories, Preprint arXiv:math.RT /0503240, 2005.; B. Keller, On Triangulated orbit categories, Preprint arXiv:math.RT /0503240, 2005. ·Zbl 1086.18006 |
[30] | Marsh, R.; Reineke, M.; Zelevinsky, A., Generalized associahedra via quiver representations, Trans. Amer. Math. Soc., 355, 10, 4171-4186 (2003) ·Zbl 1042.52007 |
[31] | Panyushev, D. I.,AD-nilpotent ideals of a Borel subalgebra: generators and duality, J. Algebra, 274, 2, 822-846 (2004) ·Zbl 1067.17005 |
[32] | Reiten, I.; Van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc., 15, 2, 295-366 (2002) ·Zbl 0991.18009 |
[33] | C. Riedtmann, Representation-finite self-injective algebras of class \(A_n\); C. Riedtmann, Representation-finite self-injective algebras of class \(A_n\) |
[34] | Riedtmann, C., Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv., 55, 2, 199-224 (1980) ·Zbl 0444.16018 |
[35] | Riedtmann, C.; Schofield, A., On open orbits and their complements, J. Algebra, 130, 2, 388-411 (1990) ·Zbl 0696.16025 |
[36] | Riedtmann, C.; Schofield, A., On a simplicial complex associated with tilting modules, Comment. Math. Helv., 66, 1, 70-78 (1991) ·Zbl 0790.16013 |
[37] | C.M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer, Berlin, 1984.; C.M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer, Berlin, 1984. ·Zbl 0546.16013 |
[38] | J. Scott, Grassmannians and cluster algebras, Preprint arXiv:math.CO/ 0311148, 2003, Proc. London. Math. Soc., 2003, to appear.; J. Scott, Grassmannians and cluster algebras, Preprint arXiv:math.CO/ 0311148, 2003, Proc. London. Math. Soc., 2003, to appear. |
[39] | Unger, L., Schur modules over wild, finite-dimensional path algebras with three simple modules, J. Pure Appl. Algebra, 64, 2, 205-222 (1990) ·Zbl 0701.16012 |
[40] | Unger, L., The simplical complex of tilting modules over quiver algebras, Proc. London Math. Soc., 73, 3, 27-46 (1996) ·Zbl 0861.16008 |
[41] | von Höhne, H., On the dimension vectors in preprojective components, Bull. London Math. Soc., 26, 2, 147-152 (1994) ·Zbl 0813.16008 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.