Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes.(English)Zbl 1120.65332

Summary: We study the mimetic finite difference discretization of diffusion-type problems on unstructured polyhedral meshes. We demonstrate high accuracy of the approximate solutions for general diffusion tensors, the second-order convergence rate for the scalar unknown and the first order convergence rate for the vector unknown on smooth or slightly distorted meshes, on non-matching meshes, and even on meshes with irregular-shaped polyhedra with flat faces. We show that in general the meshes with non-flat faces require more than one flux unknown per mesh face to get optimal convergence rates.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
76M20 Finite difference methods applied to problems in fluid mechanics
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

Software:

AMG1R5

Cite

References:

[1]Aavatsmark, I., An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci., 6, 405-432 (2002) ·Zbl 1094.76550
[2]Arbogast, T.; Cowsar, L.; Wheeler, M.; Yotov, I., Mixed finite element methods on non-matching multiblock grids, SIAM J. Numer. Anal., 37, 1295-1315 (2000) ·Zbl 1001.65126
[3]T. Austin, J. Morel, J. Moulton, M. Shashkov. Mimetic preconditioners for mixed discretizations of the diffusion equation. Technical Report LA-UR-01-807, Los Alamos National Laboratory, 2004. Available from: www.ima.umn.edu/talks/workshops/5-11-15.2004/moulton/moulton.pdf; T. Austin, J. Morel, J. Moulton, M. Shashkov. Mimetic preconditioners for mixed discretizations of the diffusion equation. Technical Report LA-UR-01-807, Los Alamos National Laboratory, 2004. Available from: www.ima.umn.edu/talks/workshops/5-11-15.2004/moulton/moulton.pdf
[4]Brezzi, F.; Lipnikov, K.; Shashkov, M., Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal. (2005), (to appear) ·Zbl 1108.65102
[5]Campbell, J.; Shashkov, M., A tensor artificial viscosity using a mimetic finite difference algorithm, J. Comput. Phys., 172, 739-765 (2001) ·Zbl 1002.76082
[6]Grisvard, P., Elliptic Problems in Nonsmooth domains (1985), Pitman: Pitman London ·Zbl 0695.35060
[7]Hyman, J.; Morel, J.; Shashkov, M.; Steinberg, S., Mimetic finite difference methods for diffusion equations, Comput. Geosci., 6, 3-4, 333-352 (2002) ·Zbl 1023.76033
[8]Hyman, J.; Shashkov, M., Mimetic discretizations for Maxwell’s equations and the equations of magnetic diffusion, Progr. Electromagn. Res., 32, 89-121 (2001)
[9]Hyman, J.; Shashkov, M.; Steinberg, S., The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, J. Comput. Phys., 132, 130-148 (1997) ·Zbl 0881.65093
[10]Kuznetsov, Y.; Lipnikov, K.; Shashkov, M., Mimetic finite difference method on polygonal meshes for diffusion-type problems, Comput. Geosci., 8, 301-324 (2004) ·Zbl 1088.76046
[11]Kuznetsov, Y.; Repin, S., New mixed finite element method on polygonal and polyhedral meshes, Russ. J. Numer. Anal. Math. Model., 18, 3, 261-278 (2003) ·Zbl 1048.65113
[12]Kuznetsov, Y.; Repin, S., Convergence analysis and error estimates for mixed finite element method on distorted meshes, J. Numer. Math., 13, 1, 33-51 (2005) ·Zbl 1069.65114
[13]Lipnikov, K.; Morel, J.; Shashkov, M., Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes, J. Comput. Phys., 199 (2004) ·Zbl 1057.65071
[14]Margolin, L.; Shashkov, M.; Smolarkiewicz, P., A discrete operator calculus for finite difference approximations, Comput. Meth. Appl. Mech. Eng., 187, 365-383 (2000) ·Zbl 0978.76063
[15]Mishev, I., Nonconforming finite volume methods, Comput. Geosci., 6, 253-268 (2002) ·Zbl 1036.76038
[16]Morel, J.; Roberts, R.; Shashkov, M., A local support-operators diffusion discretization scheme for quadrilateralr-z meshes, J. Comput. Phys., 144, 17-51 (1998) ·Zbl 1395.76052
[17]P. Raviart, J.-M. Thomas, A mixed finite element method for second order eliptic problems, in: I. Galligani, E. Magenes (Eds.), Mathematical Aspects of the Finite Element Method, Berlin, Heidelberg, New York, pp. 292-315, 1977.; P. Raviart, J.-M. Thomas, A mixed finite element method for second order eliptic problems, in: I. Galligani, E. Magenes (Eds.), Mathematical Aspects of the Finite Element Method, Berlin, Heidelberg, New York, pp. 292-315, 1977. ·Zbl 0362.65089
[18]Stüben, K., Algebraic multigrid (AMG): experiences and comparisons, Appl. Math. Comput., 13, 419-452 (1983) ·Zbl 0533.65064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp