18G55 | Nonabelian homotopical algebra (MSC2010) |
55U35 | Abstract and axiomatic homotopy theory in algebraic topology |
18G35 | Chain complexes (category-theoretic aspects), dg categories |
16D90 | Module categories in associative algebras |
[1] | Bergner, J.: A model category structure on the category of simplicial categories. To appear in Trans. Am. Math. Soc. (Preprint math.AT/0406507) ·Zbl 1114.18006 |
[2] | Bondal, A., Kapranov, M.: Enhanced triangulated categories. Math. URSS Sbornik 70, 93–107 (1991) ·Zbl 0729.18008 ·doi:10.1070/SM1991v070n01ABEH001253 |
[3] | Bondal, A., Larsen, M., Lunts, V.A.: Grothendieck ring of pretriangulated categories. Int. Math. Res. Not. 2004(29), 1461–1495 (2004) ·Zbl 1079.18008 ·doi:10.1155/S1073792804140385 |
[4] | Bondal, A., Van Den Bergh, M.: Generators and representability of functors in commutative and non-commutative geometry. Mosc. Math. J. 3(1), 1–36 (2003) ·Zbl 1135.18302 |
[5] | Drinfeld, V.: Quotient of dg-categories. J. Algebra 272(2), 643–691 (2004) ·Zbl 1064.18009 ·doi:10.1016/j.jalgebra.2003.05.001 |
[6] | Dugger, D.: Combinatorial model categories have presentations. Adv. Math. 164, 177–201 (2001) ·Zbl 1001.18001 ·doi:10.1006/aima.2001.2015 |
[7] | Dugger, D., Shipley, B.: K-theory and derived equivalences. Duke J. Math 124(3), 587–617 (2004) ·Zbl 1056.19002 ·doi:10.1215/S0012-7094-04-12435-2 |
[8] | Dwyer, W., Kan, D.: Homotopy commutative diagrams and their realizations. J. Pure Appl. Algebra 57(1), 5–24 (1989) ·Zbl 0678.55007 ·doi:10.1016/0022-4049(89)90023-6 |
[9] | Dwyer, W., Kan, D.: Simplicial localization of categories. J. Pure and Appl. Algebra 17, 267–284 (1980) ·Zbl 0485.18012 ·doi:10.1016/0022-4049(80)90049-3 |
[10] | Hirschhorn, P.: Model Categories and their Localizations. Math. Surveys and Monographs Series, vol. 99. AMS, Providence, (2003) ·Zbl 1017.55001 |
[11] | Hirschowitz, A., Simpson, C.: Descente pour les n-champs. Preprint math.AG/9807049 |
[12] | Hovey, M.: Model Categories. Mathematical Surveys and Monographs, vol. 63. Am. Math. Soc., Providence (1998) ·Zbl 0909.55001 |
[13] | Hovey, M.: Model category structures on chain complexes of sheaves. Trans. Am. Math. Soc. 353(6), 2441–2457 (2001) ·Zbl 0969.18010 ·doi:10.1090/S0002-9947-01-02721-0 |
[14] | Keller, B.: On the cyclic homology of exact categories. J. Pure Appl. Algebra 136, 1–56 (1999) ·Zbl 0923.19004 ·doi:10.1016/S0022-4049(97)00152-7 |
[15] | Keller, B.: Hochschild cohomology and derived Picard groups. J. Pure Appl. Algebra 190(1–3), 177–196 (2004) ·Zbl 1060.16010 ·doi:10.1016/j.jpaa.2003.10.030 |
[16] | Kock, J., Toën, B.: Simplicial localization of monoidal structures and a non-linear version of Deligne’s conjecture. Compos. Math. 141(1), 253–261 (2005) ·Zbl 1074.18006 ·doi:10.1112/S0010437X04001009 |
[17] | Lyubashenko, V.: Category of A categories. Homology Homotopy Appl. 5(1), 1–48 (2003) ·Zbl 1026.18003 |
[18] | Lyubashenko, V.: Free A categories. Theory Appl. Categ. 16(9), 174–205 (2006) ·Zbl 1118.18006 |
[19] | Orlov, D.: Equivalences of derived categories and K3 surfaces. J. Math. Sci. Alg. Geom. 85(5), 1361–1381 (1997) ·Zbl 0938.14019 |
[20] | Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc., II. Ser. 39, 436–456 (1989) ·doi:10.1112/jlms/s2-39.3.436 |
[21] | Rickard, J.: Derived equivalences as derived functors, J. Lond. Math. Soc., II. Ser. 43(1), 37–48 (1991) ·Zbl 0683.16030 ·doi:10.1112/jlms/s2-43.1.37 |
[22] | Rouquier, R., Zimmermann, A.: Picard groups for derived module categories. Proc. Lond. Math. Soc., III. Ser. 87(3), 187–225 (2003) ·Zbl 1058.18007 ·doi:10.1112/S0024611503014059 |
[23] | Shipley, B., Schwede, S.: Stable model categories are categories of modules. Topology 42(1), 103–153 (2003) ·Zbl 1013.55005 ·doi:10.1016/S0040-9383(02)00006-X |
[24] | Tabuada, G.: Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories. C. R. Acad. Sci., Paris 340, 15–19 (2005) ·Zbl 1060.18010 |
[25] | Toën, B.: Dualité de Tannaka supérieure I: Structures monoidales. (Preprint Max-Planck) |
[26] | Toën, B.: Homotopical and higher categorical structures in algebraic geometry. Hablitation thesis available at math.AG/0312262 |
[27] | Toën, B., Vezzosi, G.: Homotopical algebraic geometry I: Topos theory. Adv. Math. 193, 257–372 (2005) ·Zbl 1120.14012 ·doi:10.1016/j.aim.2004.05.004 |
[28] | Toën, B., Vezzosi, G.: Homotopical algebraic geometry II: Geometric stacks and applications. To appear in Mem. Am. Math. Soc. (Preprint math.AG/0404373) ·Zbl 1145.14003 |
[29] | Yekutieli, A.: The derived Picard group is a locally algebraic group. Algebr. Represent. Theory 7(1), 53–57 (2004) ·Zbl 1075.18007 ·doi:10.1023/B:ALGE.0000019383.78214.31 |