Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The homotopy theory of dg-categories and derived Morita theory.(English)Zbl 1118.18010

Morita theory for rings states that any functor from \(A\)-modules to \(B\)-modules commuting with colimits is necessarily the tensor product with some \(A^{\text{op}} \otimes B\)-module. When \(A\) and \(B\) are dg-algebras this is not so anymore as illustrated byD. Dugger andB. Shipley [Duke Math. J. 124, 587–617 (2004;Zbl 1056.19002)]. To fix this problem, the author proposes to work instead with dg-categories, i.e., categories enriched over chain complexes (when the category has a single object this is precisely a dg-algebra).G. Tabuada proved [C. R. Math. Acad. Sci. Paris 340, 15–19 (2005;Zbl 1060.18010)] that dg-categories form a model category where the weak equivalences are the analogues to the Dwyer-Kan equivalences for simplicial categories, seeJ. E. Bergner [Trans. Am. Math. Soc. 359, 2043–2058 (2007;Zbl 1114.18006)].
In this article a handy model for mapping spaces is identified in terms of modules. Given a dg-category \({\mathcal C}\), a \({\mathcal C}\)-module consists of chain complexes \(F(x)\) for all objects \(x\) in \({\mathcal C}\) and morphisms of chain complexes \({\mathcal C}(x, y) \otimes F(x) \rightarrow F(y)\). The category of \({\mathcal C}\)-modules is again a model category where the weak equivalences are objectwise quasi-isomorphisms of chain complexes. Among the \({\mathcal C}\otimes {\mathcal D}^{\text{op}}\)-modules consider the representable ones, i.e., those for which \(F(x, -)\), for any \(x \in {\mathcal C}\), is of the form \({\mathcal D}(-, y)\) for some \(y \in {\mathcal D}\). Define then \(\mathcal F({\mathcal C}, {\mathcal D})\) to be the category which has as objects the modules weakly equivalent to a representable one and as morphisms the quasi-isomorphisms. Then the mapping space \(\text{Map}({\mathcal C}, {\mathcal D})\) is weakly equivalent to the nerve \(N(\mathcal F({\mathcal C}, {\mathcal D}))\).
The derived tensor product of dg-categories induces a symmetric monoidal structure on the homotopy category of dg-categories. It is shown to be closed monoidal, so there exist dg-categories \({\mathbb R} \operatorname{Hom}({\mathcal C}, {\mathcal D})\). To develop Morita theory in the context of dg-categories, the author considers the dg-category \(\text{Int}({\mathcal C}(k))\) of cofibrant chain complexes and identifies the dg-category of cofibrant \({\mathcal C}^{\text{op}}\)-modules with \(\widehat{\mathcal C} = \mathbb R \operatorname{Hom}(C^{\text{op}}, {\mathcal I}nt({\mathcal C}(k)))\). He shows then that the full sub-dg-category \(\mathbb R \operatorname{Hom}_c (\widehat{\mathcal C}, \widehat{\mathcal D})\) of \(\mathbb R \operatorname{Hom}(\widehat{\mathcal C}, \widehat{\mathcal D})\) of morphisms commuting with infinite direct sums is isomorphic in the homotopy category to \({\mathcal C}^{\text{op}} \otimes^{\mathbb L} \widehat{{\mathcal D}}\). In particular there is a bijection between the set of homotopy classes \([\widehat {\mathcal C}, \widehat {\mathcal D}]_c\) and isomorphism classes in the homotopy category of \({\mathcal C} \otimes^{\mathbb L} {\mathcal D}^{\text{op}}\)-modules.
This theory not only provides the right framework to develop Morita theory for dg-algebras, it also allows the author to
(i) describe the homotopy groups of the classifying space of dg-categories in terms of Hochschild homology and the derived Picard group,
(ii) develop localization for dg-categories with respect to a set of morphisms in a given dg-category,
(iii) understand \(\mathbb R \operatorname{Hom}({\mathcal C}, {\mathcal D})\) when \({\mathcal C}\) and \({\mathcal D}\) are dg-categories of quasi-coherent or perfect complexes on certain schemes.

MSC:

18G55 Nonabelian homotopical algebra (MSC2010)
55U35 Abstract and axiomatic homotopy theory in algebraic topology
18G35 Chain complexes (category-theoretic aspects), dg categories
16D90 Module categories in associative algebras

Cite

References:

[1]Bergner, J.: A model category structure on the category of simplicial categories. To appear in Trans. Am. Math. Soc. (Preprint math.AT/0406507) ·Zbl 1114.18006
[2]Bondal, A., Kapranov, M.: Enhanced triangulated categories. Math. URSS Sbornik 70, 93–107 (1991) ·Zbl 0729.18008 ·doi:10.1070/SM1991v070n01ABEH001253
[3]Bondal, A., Larsen, M., Lunts, V.A.: Grothendieck ring of pretriangulated categories. Int. Math. Res. Not. 2004(29), 1461–1495 (2004) ·Zbl 1079.18008 ·doi:10.1155/S1073792804140385
[4]Bondal, A., Van Den Bergh, M.: Generators and representability of functors in commutative and non-commutative geometry. Mosc. Math. J. 3(1), 1–36 (2003) ·Zbl 1135.18302
[5]Drinfeld, V.: Quotient of dg-categories. J. Algebra 272(2), 643–691 (2004) ·Zbl 1064.18009 ·doi:10.1016/j.jalgebra.2003.05.001
[6]Dugger, D.: Combinatorial model categories have presentations. Adv. Math. 164, 177–201 (2001) ·Zbl 1001.18001 ·doi:10.1006/aima.2001.2015
[7]Dugger, D., Shipley, B.: K-theory and derived equivalences. Duke J. Math 124(3), 587–617 (2004) ·Zbl 1056.19002 ·doi:10.1215/S0012-7094-04-12435-2
[8]Dwyer, W., Kan, D.: Homotopy commutative diagrams and their realizations. J. Pure Appl. Algebra 57(1), 5–24 (1989) ·Zbl 0678.55007 ·doi:10.1016/0022-4049(89)90023-6
[9]Dwyer, W., Kan, D.: Simplicial localization of categories. J. Pure and Appl. Algebra 17, 267–284 (1980) ·Zbl 0485.18012 ·doi:10.1016/0022-4049(80)90049-3
[10]Hirschhorn, P.: Model Categories and their Localizations. Math. Surveys and Monographs Series, vol. 99. AMS, Providence, (2003) ·Zbl 1017.55001
[11]Hirschowitz, A., Simpson, C.: Descente pour les n-champs. Preprint math.AG/9807049
[12]Hovey, M.: Model Categories. Mathematical Surveys and Monographs, vol. 63. Am. Math. Soc., Providence (1998) ·Zbl 0909.55001
[13]Hovey, M.: Model category structures on chain complexes of sheaves. Trans. Am. Math. Soc. 353(6), 2441–2457 (2001) ·Zbl 0969.18010 ·doi:10.1090/S0002-9947-01-02721-0
[14]Keller, B.: On the cyclic homology of exact categories. J. Pure Appl. Algebra 136, 1–56 (1999) ·Zbl 0923.19004 ·doi:10.1016/S0022-4049(97)00152-7
[15]Keller, B.: Hochschild cohomology and derived Picard groups. J. Pure Appl. Algebra 190(1–3), 177–196 (2004) ·Zbl 1060.16010 ·doi:10.1016/j.jpaa.2003.10.030
[16]Kock, J., Toën, B.: Simplicial localization of monoidal structures and a non-linear version of Deligne’s conjecture. Compos. Math. 141(1), 253–261 (2005) ·Zbl 1074.18006 ·doi:10.1112/S0010437X04001009
[17]Lyubashenko, V.: Category of A categories. Homology Homotopy Appl. 5(1), 1–48 (2003) ·Zbl 1026.18003
[18]Lyubashenko, V.: Free A categories. Theory Appl. Categ. 16(9), 174–205 (2006) ·Zbl 1118.18006
[19]Orlov, D.: Equivalences of derived categories and K3 surfaces. J. Math. Sci. Alg. Geom. 85(5), 1361–1381 (1997) ·Zbl 0938.14019
[20]Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc., II. Ser. 39, 436–456 (1989) ·doi:10.1112/jlms/s2-39.3.436
[21]Rickard, J.: Derived equivalences as derived functors, J. Lond. Math. Soc., II. Ser. 43(1), 37–48 (1991) ·Zbl 0683.16030 ·doi:10.1112/jlms/s2-43.1.37
[22]Rouquier, R., Zimmermann, A.: Picard groups for derived module categories. Proc. Lond. Math. Soc., III. Ser. 87(3), 187–225 (2003) ·Zbl 1058.18007 ·doi:10.1112/S0024611503014059
[23]Shipley, B., Schwede, S.: Stable model categories are categories of modules. Topology 42(1), 103–153 (2003) ·Zbl 1013.55005 ·doi:10.1016/S0040-9383(02)00006-X
[24]Tabuada, G.: Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories. C. R. Acad. Sci., Paris 340, 15–19 (2005) ·Zbl 1060.18010
[25]Toën, B.: Dualité de Tannaka supérieure I: Structures monoidales. (Preprint Max-Planck)
[26]Toën, B.: Homotopical and higher categorical structures in algebraic geometry. Hablitation thesis available at math.AG/0312262
[27]Toën, B., Vezzosi, G.: Homotopical algebraic geometry I: Topos theory. Adv. Math. 193, 257–372 (2005) ·Zbl 1120.14012 ·doi:10.1016/j.aim.2004.05.004
[28]Toën, B., Vezzosi, G.: Homotopical algebraic geometry II: Geometric stacks and applications. To appear in Mem. Am. Math. Soc. (Preprint math.AG/0404373) ·Zbl 1145.14003
[29]Yekutieli, A.: The derived Picard group is a locally algebraic group. Algebr. Represent. Theory 7(1), 53–57 (2004) ·Zbl 1075.18007 ·doi:10.1023/B:ALGE.0000019383.78214.31
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp