[1] | Ambrosio, L., Dancer, N.: Calculus of variations and partial differential equations. Springer, Berlin 1999 |
[2] | Alves, C.O., de Figueiredo, D.G.: Nonvariational elliptic systems. Discrete Contin. Dynam. Systems 8, 289–302 (2002) ·Zbl 1162.35356 ·doi:10.3934/dcds.2002.8.289 |
[3] | Bechah, A.: Positive solutions for a nonvariational quasil ·Zbl 1200.35108 |
[4] | Birindelli, I., Mitidieri, E.: Liouville theorems for elliptic inequalities and applications. Proc. Roy. Soc. Edinburgh 128A, 1217–1247 (1998) ·Zbl 0919.35023 ·doi:10.1017/S0308210500027293 |
[5] | Brezis, H., Cazenave, T., Martel, Y., Ramiandrisoa, A.: Blow up for ut-{\(\Delta\)} u=g(u) revisited. Adv. Differ. Equations 1, 73–90 (1996) ·Zbl 0855.35063 |
[6] | Brezis, H., Turner, R.: On a class of superlinear elliptic problems. Commun. Partial Diff. Equations 2, 601–614 (1977) ·Zbl 0358.35032 ·doi:10.1080/03605307708820041 |
[7] | Busca, J., Manasevich, R.: A Liouville-type theorem for Lane-Emden system. Indiana Univ. Math. J. 51, 37–51 (2002) ·Zbl 1033.35032 |
[8] | Chen, H.: Positive steady-state solutions of a non-linear reaction-diffusion system. Math. Meth. Appl. Sci. 20, 625–634 (1997) ·Zbl 0876.34026 ·doi:10.1002/(SICI)1099-1476(19970510)20:7<625::AID-MMA873>3.0.CO;2-V |
[9] | Clement, Ph., de Figueiredo, D.G., Mitidieri, E.: Positive solutions of semilinear elliptic systems. Commun. Partial Diff. Equations 17, 923–940 (1992) ·Zbl 0818.35027 ·doi:10.1080/03605309208820869 |
[10] | Clement, Ph., de Figueiredo, D.G., Mitidieri, E.: A priori estimates for positive solutions of semilinear elliptic systems via Hardy-Sobolev inequalities. Pitman Res. Notes Math. 343, 73–91, 1996 ·Zbl 0868.35012 |
[11] | Clement, Ph., Fleckinger, J., Mitidieri, E., de Thélin, F.: Existence of positive solutions for nonvariational quasilinear system. J. Diff. Equations 166, 455–477 (2000) ·Zbl 0964.35049 ·doi:10.1006/jdeq.2000.3805 |
[12] | Clement, Ph., Manasevich, R., Mitidieri, E.: Positive solutions for a quasilinear system via blow up. Comm. Partial Diff. Equations 18, 2071–2106 (1993) ·Zbl 0802.35044 ·doi:10.1080/03605309308821005 |
[13] | Cosner, C.: Positive solutions for a superlinear elliptic systems without variational structure. Nonlinear Anal. 8, 1427–1436 (1984) ·Zbl 0524.35049 ·doi:10.1016/0362-546X(84)90053-1 |
[14] | Cuesta, M., de Figueiredo, D.G., Srikant, P.N.: On a resonant-superlinear elliptic problem. Calc. Var. PDE 17, 221–233 (2003) ·Zbl 1257.35088 |
[15] | Dall’Acqua, A.: Positive solutions for a class of reaction-diffusion systems. Commun. Pure Appl. Anal. 2, 65–76 (2003) ·Zbl 1071.35044 ·doi:10.3934/cpaa.2003.2.65 |
[16] | Dickstein, F., Escobedo, M.: A maximum principle for semilinear parabolic systems and applications. Nonlinear Anal. 45, 825–837 (2001) ·Zbl 0986.35044 ·doi:10.1016/S0362-546X(99)00419-8 |
[17] | de Figueiredo, D.G.: Semilinear elliptic systems. Nonlinear Functional Analysis and Applications to Differential Equations, Trieste 1997, World Sci. Publishing, River Edge, N.J., 1998, pp. 122–152 |
[18] | de Figueiredo, D.G., Felmer, P.: A Liouville-type theorem for elliptic systems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21, 387–397 (1994) ·Zbl 0820.35042 |
[19] | de Figueiredo, D.G., Lions, P.-L., Nussbaum, R.D.: A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math. Pures et Appl. 61, 41–63 (1982) ·Zbl 0452.35030 |
[20] | de Figueiredo, D.G., Yang, J.: A priori bounds for positive solutions of a non-variational elliptic system. Commun. Partial Diff. Equations 26, 2305–2321 (2001) ·Zbl 0997.35015 ·doi:10.1081/PDE-100107823 |
[21] | Fila, M., Souplet, Ph., Weissler, F.: Linear and nonli ·Zbl 0993.35023 ·doi:10.1007/PL00004471 |
[22] | Gidas, B., Spruck, J.: A priori bounds for positive solutions of a nonlinear elliptic equations. Commun. Partial Diff. Equations 6, 883–901 (1981) ·Zbl 0462.35041 ·doi:10.1080/03605308108820196 |
[23] | Gu, Y., Wang, M.: A semilinear parabolic system arising in the nuclear reactors. Chinese Sci. Bull. 39, 1588–1592 (1994) ·Zbl 0838.35060 |
[24] | Gu, Y., Wang, M.: Existence of positive stationary solutions and threshold results for a reaction-diffusion system. J. Diff. Equations 130, 277–291 (1996) ·Zbl 0858.35059 ·doi:10.1006/jdeq.1996.0143 |
[25] | Li, Y., Liu, Q., Xie, C.: Semilinear reaction-diffusion systems of several components. J. Diff. Equations 187, 510–519 (2003) ·Zbl 1029.35138 ·doi:10.1016/S0022-0396(02)00075-X |
[26] | Lou, Y.: Necessary and sufficient condition for the existence of positive solutions of certain cooperative system. Nonlinear Anal. 26, 1079–1095 (1996) ·Zbl 0856.35038 ·doi:10.1016/0362-546X(94)00265-J |
[27] | Mitidieri, E.: Nonexistence of positive solutions of semilinea |
[28] | Quittner, P.: Transition from decay to blow-up in a parabolic system. Archivum Math. 34, 199–206 (1998) ·Zbl 0911.35062 |
[29] | Reichel, W., Zou, H.: Non-existence results for semilinear cooperative elliptic systems via moving spheres. J. Diff. Equations 161, 219–243 (2000) ·Zbl 0962.35054 ·doi:10.1006/jdeq.1999.3700 |
[30] | Serrin, J., Zou, H.: Non-existence of positive solutions of Lane-Emden systems. Diff. Integral Equations 9, 635–653 (1996) ·Zbl 0868.35032 |
[31] | Serrin, J., Zou, H.: Existence of positive solutions of the Lane-Emden system. Atti Sem. Mat. Fis. Univ. Modena 46, suppl., 369–380 (1998) ·Zbl 0917.35031 |
[32] | Souplet, Ph.: Optimal regularity conditions for ·Zbl 1113.35062 |
[33] | Souto, M.: A priori estimate and existence of positive solutions of nonlinear cooperative elliptic system. Diff. Integral Equations 8, 1245–1258 (1995) ·Zbl 0823.35064 |
[34] | de Thélin, F., Vélin, J.: Existence and nonexistence of nontrivial solutions for some nonlinear elliptic systems. Rev. Mat. Univ. Complut. Madrid 6, 153–194 (1993) ·Zbl 0834.35042 |
[35] | Troy, W.C.: Symmetry properties in systems of semilinear elliptic equations. J. Diff. Equations 42, 400–413 (1981) ·Zbl 0486.35032 ·doi:10.1016/0022-0396(81)90113-3 |
[36] | Zheng, S.: Nonexistence of positive solutions to a semilinear elliptic system and blow-up estimates for a reaction-diffusion system. J. Math. Anal. Appl. 232, 293–311 (1999) ·Zbl 0935.35042 ·doi:10.1006/jmaa.1999.6273 |
[37] | Zou, H.: A priori estimates for a semilinear elliptic systems without variational structure and their applications. Math. Ann. 323, 713–735 (2002) ·Zbl 1005.35024 ·doi:10.1007/s002080200324 |