[1] | Lee, J. S.; Jiang, L. Z., A boundary integral formulation and 2D fundamental solution for piezoelectric media, Mech Res Commun, 22, 47-54 (1994) ·Zbl 0801.73063 |
[2] | Sosa, H. A.; Castro, M. A., On concentrated load at boundary of a piezoelectric half-plane, J Mech Phy Solids, 42, 1105-1122 (1994) ·Zbl 0806.73059 |
[3] | Gao, C. F.; Fan, W. X., Green’s functions for generalized 2D problems in piezoelectric media with an elliptic hole, Mech Res Commun, 25, 685-693 (1998) ·Zbl 1122.74388 |
[4] | Pan, E. N., A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids, Engng Anal Bound Elem, 23, 67-76 (1999) ·Zbl 1062.74639 |
[5] | AbouDina, M. S.; Ghaleb, A. F., On the boundary integral formulation of the plane theory of elasticity with applications (analytical aspects), J Comput Appl Math, 106, 55-70 (1999) ·Zbl 0943.74004 |
[6] | Denda, M.; Lua, J., Development of the boundary element method for 2D piezoelectricity, Compos, Part B-Engng, 30, 699-707 (1999) |
[7] | Qin, Q. H.; Meng, L., BEM for crack-inclusion problems of plane thermopiezoelectric solids, Int J Numeric Meth Engng, 48, 1071-1088 (2000) ·Zbl 0974.74076 |
[8] | Qin, Q. H., Thermoelectroelastic analysis of cracks in piezoelectric half-plane by BEM, Comput Mech, 23, 353-360 (1999) ·Zbl 0951.74077 |
[9] | Gao, C. F.; Wang, M. Z., Green’s functions of an interfacial crack between two dissimilar piezoelectric media, Int J Solids Struct, 38, 5323-5334 (2001) ·Zbl 0997.74050 |
[10] | Liu, Y.; Fan, H., On the conventional boundary integral equation formulation for piezoelectric solids with defects or of thin shapes, Engng Anal Bound Elem, 25, 77-91 (2001) ·Zbl 1114.74497 |
[11] | Liu, Y.; Fan, H., Analysis of thin piezoelectric solids by the boundary element method, Comput Methods Appl Mech Engng, 191, 2297-2315 (2002) ·Zbl 1131.74342 |
[12] | Qin, Q. H., Fracture mechanics of piezoelectric materials (2001), WIT Press: WIT Press Southampton |
[13] | Chen, T. Y., Green’s functions and the non-uniform transformation problem in a piezoelectric medium, Mech Res Commun, 20, 271-278 (1993) ·Zbl 0773.73077 |
[14] | Chen, T. Y.; Lin, F. Z., Numerical evaluation of derivatives of the anisotropic piezoelectric Green’s functions, Mech Res Commun, 20, 501-506 (1993) ·Zbl 0925.73737 |
[15] | Chen, T. Y.; Lin, F. Z., Boundary integral formulations for three-dimensional anisotropic piezoelectric solids, Comput Mech, 15, 485-496 (1995) ·Zbl 0826.73066 |
[16] | Pan, E. N.; Tonon, F., Three-dimensional Green’s functions in anisotropic piezoelectric solids, Int J Solids Struct, 37, 943-958 (2000) ·Zbl 0977.74025 |
[17] | Pan, E. N.; Yuan, F. G., Three-dimensional Green’s functions in anisotropic piezoelectric bimaterials, Int J Engng Sci, 38, 1939-1960 (2000) |
[18] | Dunn, M. L., Electroelastic Green’s functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems, Int J Engng Sci, 32, 119-131 (1994) ·Zbl 0798.73046 |
[19] | Dunn, M. L.; Wienecke, H. A., Green’s functions for transversely isotropic piezoelectric solids, Int J Solids Struct, 33, 4571-4581 (1996) ·Zbl 0919.73293 |
[20] | Dunn, M. L.; Wienecke, H. A., Half-space Green’s functions for transversely isotropic piezoelectric solids, J Appl Mech, 66, 675-679 (1999) |
[21] | Pan, E., Mindlin’s problem for an anisotropic piezoelectric half space with general boundary conditions, Proc Royal Soc Lond (A), 458, 181-208 (2002) ·Zbl 1047.74015 |
[22] | Ding, H. J.; Wang, G. Q.; Chen, W. Q., Green’s functions for a two-phase infinite piezoelectric plane, Proc Royal Soc Lond (A), 453, 2241-2257 (1997) ·Zbl 1067.74523 |
[23] | Ding, H. J.; Wang, G. Q.; Chen, W. Q., Green’s functions for a piezoelectric half-plane, Sci China (E), 41, 70-75 (1998) ·Zbl 0920.35151 |
[24] | Ding, H. J.; Wang, G. Q.; Chen, W. Q., A boundary integral formulation and 2D fundamental solutions for piezoelectric media, Comput Meth Appl Mech Engng, 158, 65-80 (1998) ·Zbl 0954.74077 |
[25] | Ding, H. J.; Chen, B.; Liang, J., On the Green’s functions for two-phase transversely isotropic piezoelectric media, Int J Solids Struct, 34, 3041-3057 (1997) ·Zbl 0942.74555 |
[26] | Ding, H. J.; Liang, J., The fundamental solutions for transversely isotropic piezoelectricity and boundary element method, Comput Struct, 71, 447-455 (1999) |
[27] | Ding, H. J.; Liang, J., Green’s functions for a transversely isotropic piezoelectric half-space, Acta Mechanica Solida Sinica, 19, 180-183 (1999), [in Chinese] |
[28] | Ding, H. J.; Wang, G. Q.; Chen, W. Q., General solution of plane problem of piezoelectric media expressed by harmonic functions, Appl Math Mech, 757-764 (1997) ·Zbl 0908.73068 |
[29] | Ding, H. J.; Chen, B.; Liang, J., General solutions for coupled equations for piezoelectric media, Int J Solids Struct, 33, 2283-2298 (1996) ·Zbl 0899.73453 |
[30] | Ding, H. J.; Chi, Y. W.; Guo, F. L., Solutions for transversely isotropic piezoelectric infinite body, semi-infinite body and bimaterial infinite body subjected to uniform ring loading and charge, Int J Solids Struct, 36, 2613-2631 (1999) ·Zbl 0938.74028 |
[31] | Liang, J.; Ding, H. J., Comment on solutions for transversely isotropic piezoelectric infinite body, semi-infinite body and bimaterial infinite body subjected to uniform ring loading and charge, Int J Solids Struct, 37, 4309-4312 (2000) ·Zbl 1079.74542 |
[32] | Ding, H. J., Reply to comment by J Liang, H Ding,, Int J Solids Struct, 37, 4313 (2000) ·Zbl 1079.74538 |
[33] | Ding, H. J.; Wang, G. Q.; Liang, J., General and fundamental solutions of plane piezoelectroelastic problem, Acta Mechanica Sinica, 441-448 (1996), [in Chinese] |
[34] | Ding, H. J.; Wang, G. Q.; Chen, W. Q., Fundamental solutions for plane problem of piezoelectric materials, Sci China (E), 40, 3, 331-336 (1997) ·Zbl 0888.73048 |
[35] | Ding, H. J.; Chen, B.; Liang, J., Fundamental solution for transversely isotropic piezoelectric media, Sci China (A), 39, 766-775 (1997) ·Zbl 0867.35106 |
[36] | Sosa, H. A., Plane problems in piezoelectric media with defects, Int J Solids Struct, 28, 491-505 (1991) ·Zbl 0749.73070 |
[37] | Kogan, L.; Hui, C. Y.; Molkov, V., Stress and induction field of a spheroidal inclusion or a penny-shaped crack in a transversely isotropic piezoelectric material, Int J Solids Struct, 33, 2719-2737 (1996) ·Zbl 0903.73062 |
[38] | Ding, H. J.; Guo, F. L.; Hou, P. F.; Zou, D. Q., On the equilibrium of piezoelectric bodies of revolution, Int J Solids Struct, 37, 1293-1326 (2000) ·Zbl 0977.74024 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.