Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Green’s functions and boundary element method for transversely isotropic piezoelectric materials.(English)Zbl 1112.74550

Summary: This paper summarizes our work on Green’s functions and boundary element method for transversely isotropic piezoelectric materials. These include the two-dimensional (2D) Green’s functions of a two-phase infinite plane, from which the fundamental solutions of an infinite piezoelectric plane and an infinite half-pane can be easily derived, as well as their 3D counterparts. All the results are obtained in an exact and explicit way and hence are very convenient to be used in the associated computation with boundary element method. Numerical examples are also given.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
74F15 Electromagnetic effects in solid mechanics

Cite

References:

[1]Lee, J. S.; Jiang, L. Z., A boundary integral formulation and 2D fundamental solution for piezoelectric media, Mech Res Commun, 22, 47-54 (1994) ·Zbl 0801.73063
[2]Sosa, H. A.; Castro, M. A., On concentrated load at boundary of a piezoelectric half-plane, J Mech Phy Solids, 42, 1105-1122 (1994) ·Zbl 0806.73059
[3]Gao, C. F.; Fan, W. X., Green’s functions for generalized 2D problems in piezoelectric media with an elliptic hole, Mech Res Commun, 25, 685-693 (1998) ·Zbl 1122.74388
[4]Pan, E. N., A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids, Engng Anal Bound Elem, 23, 67-76 (1999) ·Zbl 1062.74639
[5]AbouDina, M. S.; Ghaleb, A. F., On the boundary integral formulation of the plane theory of elasticity with applications (analytical aspects), J Comput Appl Math, 106, 55-70 (1999) ·Zbl 0943.74004
[6]Denda, M.; Lua, J., Development of the boundary element method for 2D piezoelectricity, Compos, Part B-Engng, 30, 699-707 (1999)
[7]Qin, Q. H.; Meng, L., BEM for crack-inclusion problems of plane thermopiezoelectric solids, Int J Numeric Meth Engng, 48, 1071-1088 (2000) ·Zbl 0974.74076
[8]Qin, Q. H., Thermoelectroelastic analysis of cracks in piezoelectric half-plane by BEM, Comput Mech, 23, 353-360 (1999) ·Zbl 0951.74077
[9]Gao, C. F.; Wang, M. Z., Green’s functions of an interfacial crack between two dissimilar piezoelectric media, Int J Solids Struct, 38, 5323-5334 (2001) ·Zbl 0997.74050
[10]Liu, Y.; Fan, H., On the conventional boundary integral equation formulation for piezoelectric solids with defects or of thin shapes, Engng Anal Bound Elem, 25, 77-91 (2001) ·Zbl 1114.74497
[11]Liu, Y.; Fan, H., Analysis of thin piezoelectric solids by the boundary element method, Comput Methods Appl Mech Engng, 191, 2297-2315 (2002) ·Zbl 1131.74342
[12]Qin, Q. H., Fracture mechanics of piezoelectric materials (2001), WIT Press: WIT Press Southampton
[13]Chen, T. Y., Green’s functions and the non-uniform transformation problem in a piezoelectric medium, Mech Res Commun, 20, 271-278 (1993) ·Zbl 0773.73077
[14]Chen, T. Y.; Lin, F. Z., Numerical evaluation of derivatives of the anisotropic piezoelectric Green’s functions, Mech Res Commun, 20, 501-506 (1993) ·Zbl 0925.73737
[15]Chen, T. Y.; Lin, F. Z., Boundary integral formulations for three-dimensional anisotropic piezoelectric solids, Comput Mech, 15, 485-496 (1995) ·Zbl 0826.73066
[16]Pan, E. N.; Tonon, F., Three-dimensional Green’s functions in anisotropic piezoelectric solids, Int J Solids Struct, 37, 943-958 (2000) ·Zbl 0977.74025
[17]Pan, E. N.; Yuan, F. G., Three-dimensional Green’s functions in anisotropic piezoelectric bimaterials, Int J Engng Sci, 38, 1939-1960 (2000)
[18]Dunn, M. L., Electroelastic Green’s functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems, Int J Engng Sci, 32, 119-131 (1994) ·Zbl 0798.73046
[19]Dunn, M. L.; Wienecke, H. A., Green’s functions for transversely isotropic piezoelectric solids, Int J Solids Struct, 33, 4571-4581 (1996) ·Zbl 0919.73293
[20]Dunn, M. L.; Wienecke, H. A., Half-space Green’s functions for transversely isotropic piezoelectric solids, J Appl Mech, 66, 675-679 (1999)
[21]Pan, E., Mindlin’s problem for an anisotropic piezoelectric half space with general boundary conditions, Proc Royal Soc Lond (A), 458, 181-208 (2002) ·Zbl 1047.74015
[22]Ding, H. J.; Wang, G. Q.; Chen, W. Q., Green’s functions for a two-phase infinite piezoelectric plane, Proc Royal Soc Lond (A), 453, 2241-2257 (1997) ·Zbl 1067.74523
[23]Ding, H. J.; Wang, G. Q.; Chen, W. Q., Green’s functions for a piezoelectric half-plane, Sci China (E), 41, 70-75 (1998) ·Zbl 0920.35151
[24]Ding, H. J.; Wang, G. Q.; Chen, W. Q., A boundary integral formulation and 2D fundamental solutions for piezoelectric media, Comput Meth Appl Mech Engng, 158, 65-80 (1998) ·Zbl 0954.74077
[25]Ding, H. J.; Chen, B.; Liang, J., On the Green’s functions for two-phase transversely isotropic piezoelectric media, Int J Solids Struct, 34, 3041-3057 (1997) ·Zbl 0942.74555
[26]Ding, H. J.; Liang, J., The fundamental solutions for transversely isotropic piezoelectricity and boundary element method, Comput Struct, 71, 447-455 (1999)
[27]Ding, H. J.; Liang, J., Green’s functions for a transversely isotropic piezoelectric half-space, Acta Mechanica Solida Sinica, 19, 180-183 (1999), [in Chinese]
[28]Ding, H. J.; Wang, G. Q.; Chen, W. Q., General solution of plane problem of piezoelectric media expressed by harmonic functions, Appl Math Mech, 757-764 (1997) ·Zbl 0908.73068
[29]Ding, H. J.; Chen, B.; Liang, J., General solutions for coupled equations for piezoelectric media, Int J Solids Struct, 33, 2283-2298 (1996) ·Zbl 0899.73453
[30]Ding, H. J.; Chi, Y. W.; Guo, F. L., Solutions for transversely isotropic piezoelectric infinite body, semi-infinite body and bimaterial infinite body subjected to uniform ring loading and charge, Int J Solids Struct, 36, 2613-2631 (1999) ·Zbl 0938.74028
[31]Liang, J.; Ding, H. J., Comment on solutions for transversely isotropic piezoelectric infinite body, semi-infinite body and bimaterial infinite body subjected to uniform ring loading and charge, Int J Solids Struct, 37, 4309-4312 (2000) ·Zbl 1079.74542
[32]Ding, H. J., Reply to comment by J Liang, H Ding,, Int J Solids Struct, 37, 4313 (2000) ·Zbl 1079.74538
[33]Ding, H. J.; Wang, G. Q.; Liang, J., General and fundamental solutions of plane piezoelectroelastic problem, Acta Mechanica Sinica, 441-448 (1996), [in Chinese]
[34]Ding, H. J.; Wang, G. Q.; Chen, W. Q., Fundamental solutions for plane problem of piezoelectric materials, Sci China (E), 40, 3, 331-336 (1997) ·Zbl 0888.73048
[35]Ding, H. J.; Chen, B.; Liang, J., Fundamental solution for transversely isotropic piezoelectric media, Sci China (A), 39, 766-775 (1997) ·Zbl 0867.35106
[36]Sosa, H. A., Plane problems in piezoelectric media with defects, Int J Solids Struct, 28, 491-505 (1991) ·Zbl 0749.73070
[37]Kogan, L.; Hui, C. Y.; Molkov, V., Stress and induction field of a spheroidal inclusion or a penny-shaped crack in a transversely isotropic piezoelectric material, Int J Solids Struct, 33, 2719-2737 (1996) ·Zbl 0903.73062
[38]Ding, H. J.; Guo, F. L.; Hou, P. F.; Zou, D. Q., On the equilibrium of piezoelectric bodies of revolution, Int J Solids Struct, 37, 1293-1326 (2000) ·Zbl 0977.74024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp