Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Optimal Sobolev norms and the \(L^p\) Minkowski problem.(English)Zbl 1110.46023

The authors study the relation between the optimal Sobolev norms, sharp Galiardo-Nirenberg inequalities and the Minkowski problems for convex bodies. It is proved that if \(1\leq p<\infty\) and \(f:{\mathbb R}^n\rightarrow {\mathbb R}\) has \(L^p\) weak derivative, then there exists a unique origin-symmetric convex body \(K=K_pf\) such that for every even continuous, positive function \(\varphi\) of homogeneous degree \(1\), we have \[ \int_{{\mathbb R}^n}\varphi(-\nabla f(x))^p\,dx = \frac{1}{V(K)}\int_{{\mathbb S}^{n-1}}\varphi(u)^pd S_p(K,u), \] where \(S_p(K,\cdot)\) is the \(L^p\) surface area measure of \(K\). Conversely, if \(K\) is an origin-symmetric convex body, then there exists a function \(f\) with \(L^p\) weak derivative such that \(K_p=K\). Moreover, if in addition \(f\in L^q\cap L^r\), \(1\leq p<n\) and \(0<r\leq np/(n-p)\), then \(f\) satisfies the sharp affine inequality \[V(K_{p}f)^{-1/n}\geq c_{p,r,n}\| f\| _q^{1-\alpha}\| f\| _r^{\alpha}\] for some \(q=q(p,r)\) and \(\alpha=\alpha(p,r,n,q)\). It is proved that the left hand side of the last inequality can be replaced by \(V(B_{p}f)^{-1/n}\) with different \(c_{p,r,n}\) constant. Here, \(B_pf\) is the \(L^p\) polar projection body related to the function \(f\).

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
52A21 Convexity and finite-dimensional Banach spaces (including special norms, zonoids, etc.) (aspects of convex geometry)

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp