Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A mixed finite volume scheme for anisotropic diffusion problems on any grid.(English)Zbl 1109.65099

A new finite volume scheme for anisotropic heterogeneous diffusion problems on unstructured irregular grids, which is easy to implement is presented here [cf.R. A. Klausen andT. F. Russell [Comput. Geosci, 8, No. 4, 341–377 (2004)]. This can apply to any type of grid in any space dimension, with very few conditions on the control volumes. Accurate results are obtained on fairly irregular grids in the case of highly heterogeneous anisotropic problems. Efficiency of the scheme is also shown on several types of grids.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations

Cite

References:

[1]Aavatsmark I. (2002) An introduction to multipoint flux approximations for quadrilateral grids. Locally conservative numerical methods for flow in porous media. Comput. Geosci. 6, 405–432 ·Zbl 1094.76550 ·doi:10.1023/A:1021291114475
[2]Aavatsmark I., Barkve T., Boe O., Mannseth T. (1998) Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: derivation of the methods. J. Sci. Comput. 19, 1700–1716 ·Zbl 0951.65080
[3]Aavatsmark I., Barkve T., Boe O., Mannseth T. (1998) Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results. SIAM J. Sci. Comput. 19, 1717–1736 ·Zbl 0951.65082 ·doi:10.1137/S1064827595293594
[4]Arbogast T., Cowsar L.C., Wheeler M.F., Yotov I. (2000) Mixed finite element methods on nonmatching multiblock grids. SIAM J. Numer. Anal. 37(4): 1295–1315 ·Zbl 1001.65126 ·doi:10.1137/S0036142996308447
[5]Arbogast T., Wheeler M.F., Yotov I. (1997) Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34(2): 828–852 ·Zbl 0880.65084 ·doi:10.1137/S0036142994262585
[6]Chavent G., Cohen G., Jaffré J. (1984) Discontinuous upwinding and mixed finite elements for two-phase flows in reservoir simulation. Comput. Methods Appl. Mech. Eng. 47, 93–118 ·Zbl 0545.76130 ·doi:10.1016/0045-7825(84)90049-5
[7]Chen Z. (1998) Expanded mixed finite element methods for linear second-order elliptic problems. I. RAIRO, Modélisation. Math. Anal. Numér. 32(4): 479–499 ·Zbl 0910.65079
[8]Chen Z. (1998) Expanded mixed finite element methods for quasilinear second order elliptic problems. II. RAIRO, Modélisation. Math. Anal. Numér. 32(4): 501–520 ·Zbl 0910.65080
[9]Croisille J-P. (2000) Finite volume box-schemes and mixed methods. Math. Model. Numer. Anal. 34(5): 1087–1106 ·Zbl 0966.65082 ·doi:10.1051/m2an:2000117
[10]Droniou J. (2003) Error estimates for the convergence of a finite volume discretization of convection-diffusion equations. J. Numer. Math. 11, 1–32 ·Zbl 1029.65124 ·doi:10.1515/156939503322004873
[11]Droniou J., Eymard R., Hilhorst D., Zhou X.D. (2003) Convergence of a finite volume - mixed finite element method for a system of a hyperbolic and an elliptic equations. IMA J. Numer. Anal. 23, 507–538 ·Zbl 1040.76034 ·doi:10.1093/imanum/23.3.507
[12]Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis. vol. 7, pp. 713–1020 North Holland, (2000) ·Zbl 0981.65095
[13]Eymard R., Gallouët T., Herbin R. (2004) A finite volume for anisotropic diffusion problems. Comptes Rendus l’Acad. Sci. 339, 299–302 ·Zbl 1055.65124 ·doi:10.1016/j.crma.2004.05.023
[14]Eymard, R., Gallouët, T., Herbin, R.: A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal. Adv. Access (2005). DOI: 10.1093/imanum/dri036 ·Zbl 1093.65110
[15]Eymard R., Gallouët T., Herbin R. (2001) Finite volume approximation of elliptic problems and convergence of an approximate gradient. Appl. Numer. Math. 37, 31–53 ·Zbl 0982.65122 ·doi:10.1016/S0168-9274(00)00024-6
[16]Faille I. (1992) A control volume method to solve an elliptic equation on a two- dimensional irregular mesh. Comput. Methods Appl. Mech. Eng. 100, 275–290 ·Zbl 0761.76068 ·doi:10.1016/0045-7825(92)90186-N
[17]Gallouët T., Herbin R., Vignal M.H. (2000) Error estimate for the approximate finite volume solutions of convection diffusion equations with Dirichlet, Neumann or Fourier boundary conditions. SIAM J. Numer. Anal. 37(6): 1935–1972 ·Zbl 0986.65099 ·doi:10.1137/S0036142999351388
[18]Kershaw D.S. (1981) Differencing of the diffusion equation in Lagrangian hydrodynamic codes. J. Comput. Phys. 39, 375–395 ·Zbl 0467.76080 ·doi:10.1016/0021-9991(81)90158-3
[19]Klausen R.A., Russell T.F. (2004) Relationships among some locally conservative discretization methods which handle discontinuous coefficients. Comput. Geosci. 8, 341–377 ·Zbl 1124.76030 ·doi:10.1007/s10596-005-1815-9
[20]Kuznetsov Y., Repin S. (2005) Convergence analysis and error estimates for mixed finite element method on distorted meshes. J. Numer. Math. 13(1): 33–51 ·Zbl 1069.65114 ·doi:10.1515/1569395054068973
[21]Le Potier C. (2005) A finite volume method for the approximation of highly anisotropic diffusion operators on unstructured meshes. Finite Volumes for Complex Applications IV. Marrakesh, Marocco ·Zbl 1422.65210
[22]Lipnikov K., Morel J., Shashkov M. (2004) Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes (english). J. Comput. Phys. 199, 589–597 ·Zbl 1057.65071 ·doi:10.1016/j.jcp.2004.02.016
[23]Roberts, J.E., Thomas, J.M.: Mixed and hybrid methods. In: Ciarlet, P.G. et al. (ed.) Handbook of Numerical Analysis, vol. 2, pp. 523–639. North-Holland (1991) ·Zbl 0875.65090
[24]Younes A., Ackerer P., Chavent G. (2004) From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions. Int. J. Numer. Methods Eng. 59, 365–388 ·Zbl 1043.65131 ·doi:10.1002/nme.874
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp