Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids.(English)Zbl 1086.65108

The authors consider the finite volume method to approximately solve the two-dimensional Laplace equation \(-\Delta \phi =f\) on a bounded domain \(\Omega\) using two different meshes. Then they define on both meshes discrete and gradient divergence operators verifying the discrete Green formula. One of the main results of the paper is to show that this finite volume method is equivalent to a nonconforming finite element method. This allows the authors to prove first order convergence in both \(H_{0} ^{1}\) and \(L^{2}\) norms. On special grids they are even able to prove superconvergence of order two. Numerical experiments are carried out. The work concludes by presenting convergence curves in the discrete \(H_{0} ^{1}\) and \(L^{2}\) norms on various types of grids of triangular type or nonconforming.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs

Software:

COUPLEX

Cite

References:

[1]G. Acosta and R.G. Durán , The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations . SIAM J. Numer. Anal. 37 ( 1999 ) 18 - 36 . Zbl 0948.65115 ·Zbl 0948.65115 ·doi:10.1137/S0036142997331293
[2]I. Babuška and A.K. Aziz , On the angle condition in the finite element method . SIAM J. Numer. Anal. 13 ( 1976 ) 214 - 226 . Zbl 0324.65046 ·Zbl 0324.65046 ·doi:10.1137/0713021
[3]J. Baranger , J.-F. Maitre and F. Oudin , Connection between finite volume and mixed finite element methods . RAIRO Modél. Math. Anal Numér. 30 ( 1996 ) 445 - 465 . Numdam | Zbl 0857.65116 ·Zbl 0857.65116
[4]S. Boivin , F. Cayré and J.-M. Hérard , A finite volume method to solve the Navier-Stokes equations for incompressible flows on unstructured meshes . Int. J. Therm. Sci. 39 ( 2000 ) 806 - 825 .
[5]P.G. Ciarlet , Basic error estimates for elliptic problems , in Handbook of Numerical Analysis Vol. 2, P.G. Ciarlet and J.-L. Lions, Eds., Amsterdam North-Holland/Elsevier ( 1991 ) 17 - 351 . Zbl 0875.65086 ·Zbl 0875.65086
[6]Y. Coudière , J.-P. Vila and P. Villedieu , Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem . ESAIM: M2AN 33 ( 1999 ) 493 - 516 . Numdam | Zbl 0937.65116 ·Zbl 0937.65116 ·doi:10.1051/m2an:1999149
[7]Y. Coudière and P. Villedieu , Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes . ESAIM: M2AN 34 ( 2000 ) 1123 - 1149 . Numdam | Zbl 0972.65081 ·Zbl 0972.65081 ·doi:10.1051/m2an:2000120
[8]K. Domelevo and P. Omnes , Construction et analyse numérique d’une méthode de volumes finis pour l’équation de Laplace sur des maillages bidimensionnels presque quelconques (in French), Rapport CEA ( 2004 ).
[9]R. Eymard , T. Gallouët and R. Herbin , Handbook of Numerical Analysis Vol . 7, P.G. Ciarlet and J.-L. Lions, Eds., North-Holland/Elsevier, Amsterdam ( 2000 ) 713 - 1020 . Zbl 0981.65095 ·Zbl 0981.65095
[10]R. Eymard , T. Gallouët and R. Herbin , Finite volume approximation of elliptic problems and convergence of an approximate gradient . Appl. Numer. Math. 37 ( 2001 ) 31 - 53 . Zbl 0982.65122 ·Zbl 0982.65122 ·doi:10.1016/S0168-9274(00)00024-6
[11]I. Faille , A control volume method to solve an elliptic equation on a two-dimensional irregular meshing . Comput. Methods Appl. Mech. Engrg. 100 ( 1991 ) 275 - 290 . Zbl 0761.76068 ·Zbl 0761.76068 ·doi:10.1016/0045-7825(92)90186-N
[12]T. Gallouët , R. Herbin and M.-H. Vignal , Error estimates for the approximate finite volume solution of convection diffusion equations with general boundary conditions . SIAM J. Numer. Anal. 37 ( 2000 ) 1935 - 1972 . Zbl 0986.65099 ·Zbl 0986.65099 ·doi:10.1137/S0036142999351388
[13]R. Glowinski , J. He , J. Rappaz and J. Wagner , A multi-domain method for solving numerically multi-scale elliptic problems . C. R. Acad. Sci. Paris Ser. I Math 338 ( 2004 ) 741 - 746 . Zbl 1049.65145 ·Zbl 1049.65145 ·doi:10.1016/j.crma.2004.02.014
[14]R. Herbin , An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh . Numer. Methods Partial Differential Equations 11 ( 1995 ) 165 - 173 . Zbl 0822.65085 ·Zbl 0822.65085 ·doi:10.1002/num.1690110205
[15]F. Hermeline , A finite volume method for the approximation of diffusion operators on distorted meshes . J. Comput. Phys. 160 ( 2000 ) 481 - 499 . Zbl 0949.65101 ·Zbl 0949.65101 ·doi:10.1006/jcph.2000.6466
[16]J.M. Hyman and M. Shashkov , Adjoint operators for the natural discretizations of the divergence, gradient, and curl on logically rectangular grids . Appl. Numer. Math. 25 ( 1997 ) 413 - 442 . Zbl 1005.65024 ·Zbl 1005.65024 ·doi:10.1016/S0168-9274(97)00097-4
[17]J.M. Hyman and M. Shashkov , Natural discretizations for the divergence, gradient, and curl on logically rectangular grids . Comput. Math. Appl. 33 ( 1997 ) 81 - 104 . Zbl 0868.65006 ·Zbl 0868.65006 ·doi:10.1016/S0898-1221(97)00009-6
[18]P. Jamet , Estimations d’erreur pour des éléments finis droits presque dégénérés . RAIRO Anal. numér. 10 ( 1976 ) 43 - 61 . Numdam | Zbl 0346.65052 ·Zbl 0346.65052
[19]L. Klinger , J.B. Vos and K. Appert , A simplified gradient evaluation on non-orthogonal meshes; application to a plasma torch simulation method . Comput. Fluids 33 ( 2004 ) 643 - 654 . Zbl 1048.76035 ·Zbl 1048.76035 ·doi:10.1016/j.compfluid.2003.07.005
[20]I.D. Mishev , Finite volume methods on Voronoi meshes . Numer. Methods Partial Differential Equations 14 ( 1998 ) 193 - 212 . Zbl 0903.65083 ·Zbl 0903.65083 ·doi:10.1002/(SICI)1098-2426(199803)14:2<193::AID-NUM4>3.0.CO;2-J
[21]L.E. Payne and H.F. Weinberger , An optimal Poincaré inequality for convex domains . Arch. Rational Mech. Anal. 5 ( 1960 ) 286 - 292 . Zbl 0099.08402 ·Zbl 0099.08402 ·doi:10.1007/BF00252910
[22]P.-A. Raviart and J.-M. Thomas , A mixed finite element method for second order elliptic problems , in Mathematical aspects of the finite element method, I. Galligani and E. Magenes, Eds., Springer-Verlag, New-York. Lecture Notes in Math. 606 ( 1977 ) 292 - 315 . Zbl 0362.65089 ·Zbl 0362.65089
[23]L. Saas , I. Faille , F. Nataf and F. Willien , Domain decomposition for a finite volume method on non-matching grids . C. R. Acad. Sci. Paris Ser. I Math. 338 ( 2004 ) 407 - 412 . Zbl 1038.65136 ·Zbl 1038.65136 ·doi:10.1016/j.crma.2003.12.014
[24]G. Strang , Variational crimes in the finite element method , in The mathematical foundations of the finite element method with applications to partial differential equations, A.K. Aziz Ed., Academic Press, New York ( 1972 ) 689 - 710 . Zbl 0264.65068 ·Zbl 0264.65068
[25]R. Vanselow and H.P. Scheffler , Convergence analysis of a finite volume method via a new nonconforming finite element method . Numer. Methods Partial Differential Equations 14 ( 1998 ) 213 - 231 . Zbl 0903.65084 ·Zbl 0903.65084 ·doi:10.1002/(SICI)1098-2426(199803)14:2<213::AID-NUM5>3.0.CO;2-R
[26]Special issue on the simulation of transport around a nuclear waste disposal site: the Couplex test cases. Computat. Geosci. 8 (2004). Zbl 1062.86501 ·Zbl 1062.86501 ·doi:10.1023/B:COMG.0000035097.89798.f9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp