65N30 | Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs |
65N12 | Stability and convergence of numerical methods for boundary value problems involving PDEs |
35J05 | Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation |
65N50 | Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs |
65N15 | Error bounds for boundary value problems involving PDEs |
[1] | G. Acosta and R.G. Durán , The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations . SIAM J. Numer. Anal. 37 ( 1999 ) 18 - 36 . Zbl 0948.65115 ·Zbl 0948.65115 ·doi:10.1137/S0036142997331293 |
[2] | I. Babuška and A.K. Aziz , On the angle condition in the finite element method . SIAM J. Numer. Anal. 13 ( 1976 ) 214 - 226 . Zbl 0324.65046 ·Zbl 0324.65046 ·doi:10.1137/0713021 |
[3] | J. Baranger , J.-F. Maitre and F. Oudin , Connection between finite volume and mixed finite element methods . RAIRO Modél. Math. Anal Numér. 30 ( 1996 ) 445 - 465 . Numdam | Zbl 0857.65116 ·Zbl 0857.65116 |
[4] | S. Boivin , F. Cayré and J.-M. Hérard , A finite volume method to solve the Navier-Stokes equations for incompressible flows on unstructured meshes . Int. J. Therm. Sci. 39 ( 2000 ) 806 - 825 . |
[5] | P.G. Ciarlet , Basic error estimates for elliptic problems , in Handbook of Numerical Analysis Vol. 2, P.G. Ciarlet and J.-L. Lions, Eds., Amsterdam North-Holland/Elsevier ( 1991 ) 17 - 351 . Zbl 0875.65086 ·Zbl 0875.65086 |
[6] | Y. Coudière , J.-P. Vila and P. Villedieu , Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem . ESAIM: M2AN 33 ( 1999 ) 493 - 516 . Numdam | Zbl 0937.65116 ·Zbl 0937.65116 ·doi:10.1051/m2an:1999149 |
[7] | Y. Coudière and P. Villedieu , Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes . ESAIM: M2AN 34 ( 2000 ) 1123 - 1149 . Numdam | Zbl 0972.65081 ·Zbl 0972.65081 ·doi:10.1051/m2an:2000120 |
[8] | K. Domelevo and P. Omnes , Construction et analyse numérique d’une méthode de volumes finis pour l’équation de Laplace sur des maillages bidimensionnels presque quelconques (in French), Rapport CEA ( 2004 ). |
[9] | R. Eymard , T. Gallouët and R. Herbin , Handbook of Numerical Analysis Vol . 7, P.G. Ciarlet and J.-L. Lions, Eds., North-Holland/Elsevier, Amsterdam ( 2000 ) 713 - 1020 . Zbl 0981.65095 ·Zbl 0981.65095 |
[10] | R. Eymard , T. Gallouët and R. Herbin , Finite volume approximation of elliptic problems and convergence of an approximate gradient . Appl. Numer. Math. 37 ( 2001 ) 31 - 53 . Zbl 0982.65122 ·Zbl 0982.65122 ·doi:10.1016/S0168-9274(00)00024-6 |
[11] | I. Faille , A control volume method to solve an elliptic equation on a two-dimensional irregular meshing . Comput. Methods Appl. Mech. Engrg. 100 ( 1991 ) 275 - 290 . Zbl 0761.76068 ·Zbl 0761.76068 ·doi:10.1016/0045-7825(92)90186-N |
[12] | T. Gallouët , R. Herbin and M.-H. Vignal , Error estimates for the approximate finite volume solution of convection diffusion equations with general boundary conditions . SIAM J. Numer. Anal. 37 ( 2000 ) 1935 - 1972 . Zbl 0986.65099 ·Zbl 0986.65099 ·doi:10.1137/S0036142999351388 |
[13] | R. Glowinski , J. He , J. Rappaz and J. Wagner , A multi-domain method for solving numerically multi-scale elliptic problems . C. R. Acad. Sci. Paris Ser. I Math 338 ( 2004 ) 741 - 746 . Zbl 1049.65145 ·Zbl 1049.65145 ·doi:10.1016/j.crma.2004.02.014 |
[14] | R. Herbin , An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh . Numer. Methods Partial Differential Equations 11 ( 1995 ) 165 - 173 . Zbl 0822.65085 ·Zbl 0822.65085 ·doi:10.1002/num.1690110205 |
[15] | F. Hermeline , A finite volume method for the approximation of diffusion operators on distorted meshes . J. Comput. Phys. 160 ( 2000 ) 481 - 499 . Zbl 0949.65101 ·Zbl 0949.65101 ·doi:10.1006/jcph.2000.6466 |
[16] | J.M. Hyman and M. Shashkov , Adjoint operators for the natural discretizations of the divergence, gradient, and curl on logically rectangular grids . Appl. Numer. Math. 25 ( 1997 ) 413 - 442 . Zbl 1005.65024 ·Zbl 1005.65024 ·doi:10.1016/S0168-9274(97)00097-4 |
[17] | J.M. Hyman and M. Shashkov , Natural discretizations for the divergence, gradient, and curl on logically rectangular grids . Comput. Math. Appl. 33 ( 1997 ) 81 - 104 . Zbl 0868.65006 ·Zbl 0868.65006 ·doi:10.1016/S0898-1221(97)00009-6 |
[18] | P. Jamet , Estimations d’erreur pour des éléments finis droits presque dégénérés . RAIRO Anal. numér. 10 ( 1976 ) 43 - 61 . Numdam | Zbl 0346.65052 ·Zbl 0346.65052 |
[19] | L. Klinger , J.B. Vos and K. Appert , A simplified gradient evaluation on non-orthogonal meshes; application to a plasma torch simulation method . Comput. Fluids 33 ( 2004 ) 643 - 654 . Zbl 1048.76035 ·Zbl 1048.76035 ·doi:10.1016/j.compfluid.2003.07.005 |
[20] | I.D. Mishev , Finite volume methods on Voronoi meshes . Numer. Methods Partial Differential Equations 14 ( 1998 ) 193 - 212 . Zbl 0903.65083 ·Zbl 0903.65083 ·doi:10.1002/(SICI)1098-2426(199803)14:2<193::AID-NUM4>3.0.CO;2-J |
[21] | L.E. Payne and H.F. Weinberger , An optimal Poincaré inequality for convex domains . Arch. Rational Mech. Anal. 5 ( 1960 ) 286 - 292 . Zbl 0099.08402 ·Zbl 0099.08402 ·doi:10.1007/BF00252910 |
[22] | P.-A. Raviart and J.-M. Thomas , A mixed finite element method for second order elliptic problems , in Mathematical aspects of the finite element method, I. Galligani and E. Magenes, Eds., Springer-Verlag, New-York. Lecture Notes in Math. 606 ( 1977 ) 292 - 315 . Zbl 0362.65089 ·Zbl 0362.65089 |
[23] | L. Saas , I. Faille , F. Nataf and F. Willien , Domain decomposition for a finite volume method on non-matching grids . C. R. Acad. Sci. Paris Ser. I Math. 338 ( 2004 ) 407 - 412 . Zbl 1038.65136 ·Zbl 1038.65136 ·doi:10.1016/j.crma.2003.12.014 |
[24] | G. Strang , Variational crimes in the finite element method , in The mathematical foundations of the finite element method with applications to partial differential equations, A.K. Aziz Ed., Academic Press, New York ( 1972 ) 689 - 710 . Zbl 0264.65068 ·Zbl 0264.65068 |
[25] | R. Vanselow and H.P. Scheffler , Convergence analysis of a finite volume method via a new nonconforming finite element method . Numer. Methods Partial Differential Equations 14 ( 1998 ) 213 - 231 . Zbl 0903.65084 ·Zbl 0903.65084 ·doi:10.1002/(SICI)1098-2426(199803)14:2<213::AID-NUM5>3.0.CO;2-R |
[26] | Special issue on the simulation of transport around a nuclear waste disposal site: the Couplex test cases. Computat. Geosci. 8 (2004). Zbl 1062.86501 ·Zbl 1062.86501 ·doi:10.1023/B:COMG.0000035097.89798.f9 |