Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On the Heegaard Floer homology of branched double-covers.(English)Zbl 1076.57013

For a closed, oriented three-manifold \(Y\) and a \(\text{Spin}^{c}\) structure \(\mathfrak{s}\in\text{Spin}^{c}(Y)\), the authors defined the Heegaard Floer homology \(\widehat{H\!F}(Y,\mathfrak{s})\) [Ann. Math. (2) 159, No. 3, 1027–1158 (2004;Zbl 1073.57009)]. They showed in [Ann. Math. (2) 159, No. 3, 1159–1245 (2004;Zbl 1081.57013)] that its Euler characteristic \(\chi(\widehat{H\!F}(Y,\mathfrak{s}))\) is one if the first Betti number of \(Y\) is zero. Therefore one has \(\chi(\widehat{H\!F}(Y))=|H^{2}(Y;\mathbb{Z})|\), where \(\widehat{H\!F}(Y):=\bigoplus_{\mathfrak{s}\in\text{Spin}^{c}(Y)}\widehat{H\!F}(Y,\mathfrak{s})\). Note that since \(\widehat{H\!F}\) has relative \(\mathbb{Z}/2\mathbb{Z}\)-grading, its Euler characteristic is well defined. For a knot in \(Y\), denote by \(Y_{0}\) (\(Y_{1}\), respectively) the three-manifold obtained from \(Y\) by Dehn surgery along the knot with framing corresponding to the meridian (\(\text{meridian}+\text{longitude}\), respectively). The authors also showed that there exists a long exact sequence \(\cdots\rightarrow\widehat{H\!F}(Y)\rightarrow\widehat{H\!F}(Y_{0})\rightarrow \widehat{H\!F}(Y_{1})\rightarrow\cdots\).
Now let us consider a link \(L\) in the three-sphere \(S^{3}\). M. Khovanov introduced an invariant \(K\!h^{i,j}(L)\) whose ‘Euler characteristic’ \(\sum_{i,j}(-1)^{i}\dim\left(K\!h^{i,j}(L)\right)q^{j}\) is equal to (a version of) the Jones polynomial. Note that if we replace \(q\) with \(-1\) we have \[|H^{2}(\Sigma(L))|=\bigl| \sum_{i,j}(-1)^{i+j}\dim\left(K\!h^{i,j}(L)\right)\bigr|,\] where \(\Sigma(L)\) is the double branched cover of \(S^{3}\) branched along \(L\). Let \(L_{0}\) (\(L_{1}\), respectively) denote the ‘\(A\)-resolution’ (‘\(A^{-1}\)-resolution’, respectively) of \(L\) at a crossing appearing in the definition of the Kauffman bracket. Then there exists a long exact sequence \(\dots\rightarrow K\!h(L)\rightarrow K\!h(L_{0})\rightarrow K\!h(L_{1})\rightarrow\cdots\) [O. Viro, Remarks on definition of Khovanov homology, arXiv: math.GT/0202199].
The main result of the paper under review is to show where the similarity between \(\widehat{H\!F}\) and \(K\!h\) described above comes from. In fact, the authors show that there exists a spectral sequence with \(E^{2}\) term \(K\!h(L;\mathbb{Z}/2\mathbb{Z}):=\bigoplus_{i,j}K\!h^{i,j}(L;\mathbb{Z}/2\mathbb{Z})\) that converges to \(\widehat{H\!F}(\Sigma(L);\mathbb{Z}/2\mathbb{Z})\).

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
57R58 Floer homology
57M12 Low-dimensional topology of special (e.g., branched) coverings
57M25 Knots and links in the \(3\)-sphere (MSC2010)
57N10 Topology of general \(3\)-manifolds (MSC2010)

Software:

Mathematica

Cite

References:

[1]Adams, C. C.; Brock, J. F.; Bugbee, J., Almost alternating links, Topology Appl., 46, 2, 151-165 (1992) ·Zbl 0766.57003
[2]Bar-Natan, D., On Khovanov’s categorification of the Jones polynomial, Algebraic Geom. Topology, 2, 337-370 (2002) ·Zbl 0998.57016
[3]Burde, G.; Zieschang, H., Knots, Number 5 in de Gruyter Studies in Mathematics (1985), Walter de Gruyter: Walter de Gruyter Berlin ·Zbl 0568.57001
[4]Crowell, R., Genus of alternating link types, Ann. of Math. (2), 69, 258-275 (1959) ·Zbl 0111.35803
[5]V. de Silva, Products in the symplectic Floer homology of Lagrangian intersections, Ph.D. Thesis, Oxford University, 1999.; V. de Silva, Products in the symplectic Floer homology of Lagrangian intersections, Ph.D. Thesis, Oxford University, 1999.
[6]Floer, A., A relative Morse index for the symplectic action, Comm. Pure Appl. Math., 41, 4, 393-407 (1988) ·Zbl 0633.58009
[7]Floer, A., Instanton homology and Dehn surgery, (Hofer, H.; Taubes, C. H.; Weinstein, A.; Zehnder, E., The Floer Memorial Volume, Progress in Mathematics, Vol. 133 (1995), Birkhäuser: Birkhäuser Basel), 77-97 ·Zbl 0996.57515
[8]Frøyshov, K. A., The Seiberg-Witten equations and four-manifolds with boundary, Math. Res. Lett., 3, 373-390 (1996) ·Zbl 0872.57024
[9]K. Fukaya, Y-G. Oh, K. Ono, H. Ohta, Lagrangian Intersection Floer Theory—Anomaly and Obstruction, Kyoto University, 2000.; K. Fukaya, Y-G. Oh, K. Ono, H. Ohta, Lagrangian Intersection Floer Theory—Anomaly and Obstruction, Kyoto University, 2000. ·Zbl 1181.53002
[10]Gordon, C. McA.; Litherland, R. A., On the signature of a link, Invent. Math., 47, 1, 53-69 (1978) ·Zbl 0391.57004
[11]M. Jacobsson, An invariant of link cobordisms from Khovanov’s homology theory, math.GT/0206303, 2002.; M. Jacobsson, An invariant of link cobordisms from Khovanov’s homology theory, math.GT/0206303, 2002.
[12]Jones, V. F.R., A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.), 12, 1, 103-111 (1985) ·Zbl 0564.57006
[13]Kauffman, L. H., State models and the Jones polynomial, Topology, 26, 3, 395-407 (1987) ·Zbl 0622.57004
[14]Khovanov, M., A categorification of the Jones polynomial, Duke Math. J., 101, 3, 359-426 (2000) ·Zbl 0960.57005
[15]Khovanov, M., A functor-valued invariant of tangles, Algebraic Geom. Topology, 2, 665-741 (2002), (electronic) ·Zbl 1002.57006
[16]M. Khovanov, Patterns in knot cohomology I, math.QA/0201306, 2002.; M. Khovanov, Patterns in knot cohomology I, math.QA/0201306, 2002.
[17]Lickorish, W. B.R., An Introduction to Knot Theory, (Graduate Texts in Mathematics, Vol. 175 (1997), Springer: Springer Berlin) ·Zbl 0216.20103
[18]P.S. Ozsváth, Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, math.SG/0105202, Ann. of Math., to appear.; P.S. Ozsváth, Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, math.SG/0105202, Ann. of Math., to appear.
[19]P.S. Ozsváth, Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, math.SG/0110169.; P.S. Ozsváth, Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, math.SG/0110169.
[20]P.S. Ozsváth, Z. Szabó, On knot Floer homology and lens space surgeries, math.GT/0303017.; P.S. Ozsváth, Z. Szabó, On knot Floer homology and lens space surgeries, math.GT/0303017.
[21]P.S. Ozsváth, Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, math.SG/0101206, Ann. of Math., to appear.; P.S. Ozsváth, Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, math.SG/0101206, Ann. of Math., to appear.
[22]Ozsváth, P. S.; Szabó, Z., Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math., 173, 2, 179-261 (2003) ·Zbl 1025.57016
[23]Ozsváth, P. S.; Szabó, Z., On the Floer homology of plumbed three-manifolds, Geom. Topology, 7, 185-224 (2003) ·Zbl 1130.57302
[24]P.S. Ozsváth, Z. Szabó, Knots with unknotting number one and Heegaard Floer homology, math.GT/0401426, 2004.; P.S. Ozsváth, Z. Szabó, Knots with unknotting number one and Heegaard Floer homology, math.GT/0401426, 2004.
[25]Salamon, D.; Zehnder, E., Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math., 45, 10, 1303-1360 (1992) ·Zbl 0766.58023
[26]Tian, G., Quantum cohomology and its associativity, (Bott, R.; Hopkins, M.; Jaffe, A.; Singer, I.; Stroock, D.; Yau, S-T., Current Developments in Mathematics, 1995 (1994), International Press), 361-401 ·Zbl 0877.58060
[27]Wolfram, S., The Mathematica book (1999), Wolfram Media, Inc. ·Zbl 0924.65002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp