[1] | Adams, C. C.; Brock, J. F.; Bugbee, J., Almost alternating links, Topology Appl., 46, 2, 151-165 (1992) ·Zbl 0766.57003 |
[2] | Bar-Natan, D., On Khovanov’s categorification of the Jones polynomial, Algebraic Geom. Topology, 2, 337-370 (2002) ·Zbl 0998.57016 |
[3] | Burde, G.; Zieschang, H., Knots, Number 5 in de Gruyter Studies in Mathematics (1985), Walter de Gruyter: Walter de Gruyter Berlin ·Zbl 0568.57001 |
[4] | Crowell, R., Genus of alternating link types, Ann. of Math. (2), 69, 258-275 (1959) ·Zbl 0111.35803 |
[5] | V. de Silva, Products in the symplectic Floer homology of Lagrangian intersections, Ph.D. Thesis, Oxford University, 1999.; V. de Silva, Products in the symplectic Floer homology of Lagrangian intersections, Ph.D. Thesis, Oxford University, 1999. |
[6] | Floer, A., A relative Morse index for the symplectic action, Comm. Pure Appl. Math., 41, 4, 393-407 (1988) ·Zbl 0633.58009 |
[7] | Floer, A., Instanton homology and Dehn surgery, (Hofer, H.; Taubes, C. H.; Weinstein, A.; Zehnder, E., The Floer Memorial Volume, Progress in Mathematics, Vol. 133 (1995), Birkhäuser: Birkhäuser Basel), 77-97 ·Zbl 0996.57515 |
[8] | Frøyshov, K. A., The Seiberg-Witten equations and four-manifolds with boundary, Math. Res. Lett., 3, 373-390 (1996) ·Zbl 0872.57024 |
[9] | K. Fukaya, Y-G. Oh, K. Ono, H. Ohta, Lagrangian Intersection Floer Theory—Anomaly and Obstruction, Kyoto University, 2000.; K. Fukaya, Y-G. Oh, K. Ono, H. Ohta, Lagrangian Intersection Floer Theory—Anomaly and Obstruction, Kyoto University, 2000. ·Zbl 1181.53002 |
[10] | Gordon, C. McA.; Litherland, R. A., On the signature of a link, Invent. Math., 47, 1, 53-69 (1978) ·Zbl 0391.57004 |
[11] | M. Jacobsson, An invariant of link cobordisms from Khovanov’s homology theory, math.GT/0206303, 2002.; M. Jacobsson, An invariant of link cobordisms from Khovanov’s homology theory, math.GT/0206303, 2002. |
[12] | Jones, V. F.R., A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.), 12, 1, 103-111 (1985) ·Zbl 0564.57006 |
[13] | Kauffman, L. H., State models and the Jones polynomial, Topology, 26, 3, 395-407 (1987) ·Zbl 0622.57004 |
[14] | Khovanov, M., A categorification of the Jones polynomial, Duke Math. J., 101, 3, 359-426 (2000) ·Zbl 0960.57005 |
[15] | Khovanov, M., A functor-valued invariant of tangles, Algebraic Geom. Topology, 2, 665-741 (2002), (electronic) ·Zbl 1002.57006 |
[16] | M. Khovanov, Patterns in knot cohomology I, math.QA/0201306, 2002.; M. Khovanov, Patterns in knot cohomology I, math.QA/0201306, 2002. |
[17] | Lickorish, W. B.R., An Introduction to Knot Theory, (Graduate Texts in Mathematics, Vol. 175 (1997), Springer: Springer Berlin) ·Zbl 0216.20103 |
[18] | P.S. Ozsváth, Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, math.SG/0105202, Ann. of Math., to appear.; P.S. Ozsváth, Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, math.SG/0105202, Ann. of Math., to appear. |
[19] | P.S. Ozsváth, Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, math.SG/0110169.; P.S. Ozsváth, Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, math.SG/0110169. |
[20] | P.S. Ozsváth, Z. Szabó, On knot Floer homology and lens space surgeries, math.GT/0303017.; P.S. Ozsváth, Z. Szabó, On knot Floer homology and lens space surgeries, math.GT/0303017. |
[21] | P.S. Ozsváth, Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, math.SG/0101206, Ann. of Math., to appear.; P.S. Ozsváth, Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, math.SG/0101206, Ann. of Math., to appear. |
[22] | Ozsváth, P. S.; Szabó, Z., Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math., 173, 2, 179-261 (2003) ·Zbl 1025.57016 |
[23] | Ozsváth, P. S.; Szabó, Z., On the Floer homology of plumbed three-manifolds, Geom. Topology, 7, 185-224 (2003) ·Zbl 1130.57302 |
[24] | P.S. Ozsváth, Z. Szabó, Knots with unknotting number one and Heegaard Floer homology, math.GT/0401426, 2004.; P.S. Ozsváth, Z. Szabó, Knots with unknotting number one and Heegaard Floer homology, math.GT/0401426, 2004. |
[25] | Salamon, D.; Zehnder, E., Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math., 45, 10, 1303-1360 (1992) ·Zbl 0766.58023 |
[26] | Tian, G., Quantum cohomology and its associativity, (Bott, R.; Hopkins, M.; Jaffe, A.; Singer, I.; Stroock, D.; Yau, S-T., Current Developments in Mathematics, 1995 (1994), International Press), 361-401 ·Zbl 0877.58060 |
[27] | Wolfram, S., The Mathematica book (1999), Wolfram Media, Inc. ·Zbl 0924.65002 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.